Sections 1 – 4 of this document comprise the Approved Flight Manual Supplement. Compliance with Section 1, Limitations is mandatory. Section 5 is unapproved and is provided for information only.

Prepared By: H. Siemens
Dart Aerospace

Reviewed By: D. Shepherd
Chief Engineer
Dart Aerospace
Log of Revisions

Revision 010 NOV 2014
Revision 123 AUG 2016
Revision 223 JAN 2018

List of Effective Pages

<table>
<thead>
<tr>
<th>Page</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro-1</td>
<td>2</td>
</tr>
<tr>
<td>Intro-2</td>
<td>2</td>
</tr>
<tr>
<td>Intro-3</td>
<td>2</td>
</tr>
<tr>
<td>Intro-4</td>
<td>2</td>
</tr>
<tr>
<td>Intro-5</td>
<td>2</td>
</tr>
<tr>
<td>Intro-6</td>
<td>2</td>
</tr>
<tr>
<td>Intro-7</td>
<td>2</td>
</tr>
<tr>
<td>Intro-8</td>
<td>2</td>
</tr>
<tr>
<td>Intro-9</td>
<td>2</td>
</tr>
<tr>
<td>Intro-10</td>
<td>2</td>
</tr>
<tr>
<td>1-1</td>
<td>1</td>
</tr>
<tr>
<td>1-2</td>
<td>1</td>
</tr>
<tr>
<td>1-3</td>
<td>1</td>
</tr>
<tr>
<td>1-4</td>
<td>1</td>
</tr>
<tr>
<td>1-5</td>
<td>1</td>
</tr>
<tr>
<td>1-6</td>
<td>1</td>
</tr>
<tr>
<td>1-7</td>
<td>1</td>
</tr>
<tr>
<td>1-8</td>
<td>1</td>
</tr>
<tr>
<td>1-9</td>
<td>1</td>
</tr>
<tr>
<td>1-10</td>
<td>1</td>
</tr>
<tr>
<td>1-11</td>
<td>1</td>
</tr>
<tr>
<td>1-12</td>
<td>1</td>
</tr>
<tr>
<td>1-13</td>
<td>1</td>
</tr>
<tr>
<td>1-14</td>
<td>1</td>
</tr>
<tr>
<td>1-15</td>
<td>1</td>
</tr>
<tr>
<td>1-16</td>
<td>1</td>
</tr>
<tr>
<td>1-17</td>
<td>1</td>
</tr>
<tr>
<td>1-18</td>
<td>1</td>
</tr>
<tr>
<td>1-19</td>
<td>1</td>
</tr>
<tr>
<td>2-1</td>
<td>1</td>
</tr>
<tr>
<td>2-2</td>
<td>1</td>
</tr>
<tr>
<td>2-3</td>
<td>1</td>
</tr>
<tr>
<td>2-4</td>
<td>1</td>
</tr>
<tr>
<td>2-5</td>
<td>1</td>
</tr>
<tr>
<td>2-6</td>
<td>1</td>
</tr>
<tr>
<td>2-7</td>
<td>1</td>
</tr>
<tr>
<td>2-8</td>
<td>1</td>
</tr>
<tr>
<td>2-9</td>
<td>1</td>
</tr>
<tr>
<td>2-10</td>
<td>1</td>
</tr>
<tr>
<td>2-11</td>
<td>1</td>
</tr>
<tr>
<td>2-12</td>
<td>1</td>
</tr>
<tr>
<td>2-13</td>
<td>1</td>
</tr>
<tr>
<td>2-14</td>
<td>1</td>
</tr>
<tr>
<td>2-15</td>
<td>1</td>
</tr>
<tr>
<td>2-16</td>
<td>1</td>
</tr>
<tr>
<td>2-17</td>
<td>1</td>
</tr>
</tbody>
</table>

• COPYRIGHT © 2014 BY EAGLE COPTERS LTD •

This document is private and confidential and is supplied on the express condition that it is not to be used for any purpose or copied or communicated to any other person without written permission from Eagle Copters Ltd.

Revision: 2
TCCA Approved Date: 23 JAN 2018

APR 1 3 2018
<table>
<thead>
<tr>
<th>Page</th>
<th>Revision</th>
<th>Page</th>
<th>Revision</th>
<th>Page</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-11</td>
<td>2</td>
<td>4-10</td>
<td>1</td>
<td>4-49</td>
<td>1</td>
</tr>
<tr>
<td>3-12</td>
<td>2</td>
<td>4-11</td>
<td>1</td>
<td>4-50</td>
<td>1</td>
</tr>
<tr>
<td>3-13</td>
<td>2</td>
<td>4-12</td>
<td>1</td>
<td>4-51</td>
<td>1</td>
</tr>
<tr>
<td>3-14</td>
<td>2</td>
<td>4-13</td>
<td>1</td>
<td>4-52</td>
<td>1</td>
</tr>
<tr>
<td>3-15</td>
<td>2</td>
<td>4-14</td>
<td>1</td>
<td>4-53</td>
<td>1</td>
</tr>
<tr>
<td>3-16</td>
<td>2</td>
<td>4-15</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-17</td>
<td>2</td>
<td>4-16</td>
<td>1</td>
<td>5-1</td>
<td>0</td>
</tr>
<tr>
<td>3-18</td>
<td>2</td>
<td>4-17</td>
<td>1</td>
<td>5-2</td>
<td>0</td>
</tr>
<tr>
<td>3-19</td>
<td>2</td>
<td>4-18</td>
<td>1</td>
<td>5-3</td>
<td>0</td>
</tr>
<tr>
<td>3-20</td>
<td>2</td>
<td>4-19</td>
<td>1</td>
<td>5-4</td>
<td>0</td>
</tr>
<tr>
<td>3-21</td>
<td>2</td>
<td>4-20</td>
<td>1</td>
<td>5-5</td>
<td>0</td>
</tr>
<tr>
<td>3-22</td>
<td>2</td>
<td>4-21</td>
<td>1</td>
<td>5-6</td>
<td>0</td>
</tr>
<tr>
<td>3-23</td>
<td>2</td>
<td>4-22</td>
<td>1</td>
<td>5-7</td>
<td>0</td>
</tr>
<tr>
<td>3-24</td>
<td>2</td>
<td>4-23</td>
<td>1</td>
<td>5-8</td>
<td>0</td>
</tr>
<tr>
<td>3-25</td>
<td>2</td>
<td>4-24</td>
<td>1</td>
<td>5-9</td>
<td>0</td>
</tr>
<tr>
<td>3-26</td>
<td>2</td>
<td>4-25</td>
<td>1</td>
<td>5-10</td>
<td>0</td>
</tr>
<tr>
<td>3-27</td>
<td>2</td>
<td>4-26</td>
<td>1</td>
<td>5-11</td>
<td>0</td>
</tr>
<tr>
<td>3-28</td>
<td>2</td>
<td>4-27</td>
<td>1</td>
<td>5-12</td>
<td>0</td>
</tr>
<tr>
<td>3-29</td>
<td>2</td>
<td>4-28</td>
<td>1</td>
<td>5-13</td>
<td>0</td>
</tr>
<tr>
<td>3-30</td>
<td>2</td>
<td>4-29</td>
<td>1</td>
<td>5-14</td>
<td>0</td>
</tr>
<tr>
<td>3-31</td>
<td>2</td>
<td>4-30</td>
<td>1</td>
<td>5-15</td>
<td>0</td>
</tr>
<tr>
<td>3-32</td>
<td>2</td>
<td>4-31</td>
<td>1</td>
<td>5-16</td>
<td>0</td>
</tr>
<tr>
<td>3-33</td>
<td>2</td>
<td>4-32</td>
<td>1</td>
<td>5-17</td>
<td>0</td>
</tr>
<tr>
<td>3-34</td>
<td>2</td>
<td>4-33</td>
<td>1</td>
<td>5-18</td>
<td>0</td>
</tr>
<tr>
<td>3-35</td>
<td>2</td>
<td>4-34</td>
<td>1</td>
<td>5-19</td>
<td>0</td>
</tr>
<tr>
<td>3-36</td>
<td>2</td>
<td>4-35</td>
<td>1</td>
<td>5-20</td>
<td>0</td>
</tr>
<tr>
<td>3-37</td>
<td>2</td>
<td>4-36</td>
<td>1</td>
<td>5-21</td>
<td>0</td>
</tr>
<tr>
<td>3-38</td>
<td>2</td>
<td>4-37</td>
<td>1</td>
<td>5-22</td>
<td>0</td>
</tr>
<tr>
<td>3-39</td>
<td>2</td>
<td>4-38</td>
<td>1</td>
<td>5-23</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4-39</td>
<td>1</td>
</tr>
<tr>
<td>4-1</td>
<td>1</td>
<td>4-40</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-2</td>
<td>1</td>
<td>4-41</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-3</td>
<td>1</td>
<td>4-42</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-4</td>
<td>1</td>
<td>4-43</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td>1</td>
<td>4-44</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-6</td>
<td>1</td>
<td>4-45</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-7</td>
<td>1</td>
<td>4-46</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-8</td>
<td>1</td>
<td>4-47</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-9</td>
<td>1</td>
<td>4-48</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TCCA Approved

APR 13 2018

Revision: 2
Date: 23 JAN 2018

© 2014 BY EAGLE COPTERS LTD

This document is private and confidential and is supplied on the express condition that it is not to be used for any purpose or copied or communicated to any other person without written permission from Eagle Copters Ltd.
Note

Revised text is indicated by a black vertical line. A revised page with only a vertical line next to the page number indicates that text has shifted or that non-technical correction(s) were made on that page. Insert latest revision pages; dispose of superseded pages.

General Information

This manual is a Flight Manual Supplement (FMS) to the basic Bell 407 Flight Manual, however, unlike most Flight Manual Supplements, all relevant information from the basic Bell 407 Flight Manual has been incorporated into this FMS for the convenience of the pilot. Therefore, there is no need to refer to the basic Bell 407 Flight Manual.

To indicate which sections are original from the Bell 407 Flight Manual and which sections are specific to this Flight Manual Supplement the following indication has been used.

If the section or paragraph is from the Bell 407 Flight Manual it has an ivory background.

If the section or paragraph is part of the amended information that forms the Flight Manual Supplement it has no special formatting.

Only the material altered/changed/deleted due to the modification is approved by TCCA for this STC program. The remaining material remains TCCA approved per the Bell 407 type certificate.

This FMS is required when the aircraft has been modified with the installation of a Honeywell HTS900-2-1D engine as per TCCA STC SH14-47 (FAA STC SR03496NY) and shall be in the helicopter during all operations.

This flight manual is divided into five sections as follows:
Section 1 Limitations
Section 2 Normal Procedures

Revision: Date: 23 JAN 2018
Section 3 Emergency and Malfunction Procedures
Section 4 Performance Data
Section 5 Weight and Balance Data

Sections 1 through 4 contain TCCA approved data necessary to operate the helicopter in a safe and efficient manner.

Section 5 provides weight and balance data essential for safe operation of the helicopter.

The Manufacturer’s Data Manual (MD-E407-789-1) consists of additional information to be used in conjunction with this Flight Manual Supplement. This manual contains useful information to familiarize the operator with the helicopter and its systems, to facilitate ground handling and servicing and assist in flight planning and operations.

The Manufacturer’s data is divided into three sections:
Section 1 – Systems Description
Section 2 – Handling and Servicing
Section 3 – Conversion Charts and Tables

Terminology

Warnings, cautions and notes are used throughout this manual to emphasize important and critical instructions and are used as follows:

```
**WARNING**

AN OPERATING PROCEDURE, PRACTICE ETC., WHICH IF NOT CORRECTLY FOLLOWED, COULD RESULT IN PERSONAL INJURY OR LOSS OF LIFE.
```

• COPYRIGHT © 2014 BY EAGLE COPTERS LTD •

This document is private and confidential and is supplied on the express condition that it is not to be used for any purpose or copied or communicated to any other person without written permission from Eagle Copters Ltd.

Revision: 2
Date: 23 JAN 2018
AN OPERATING PROCEDURE, PRACTICE ETC., WHICH, IF NOT STRICTLY OBSERVED, COULD RESULT IN DAMAGE TO OR DESTRUCTION OF EQUIPMENT.

NOTE

An operating procedure condition etc., which is essential to highlight.

Use of Procedural Words

Concept of procedural word usage and intended meaning which has been adhered to in preparing this manual is as follows:

SHALL has been used only when application of a procedure is mandatory.

SHOULD has been used only when application of a procedure is recommended.

MAY and NEED NOT have been used only when application of a procedure is optional.

WILL has been used only to indicate futurity, never to indicate a mandatory procedure.

Abbreviations and acronyms used throughout this manual are defined as follows:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>Automatic Direction Finder</td>
</tr>
<tr>
<td>AIR COND</td>
<td>Air Conditioner</td>
</tr>
<tr>
<td>A/F</td>
<td>Airframe</td>
</tr>
<tr>
<td>ALT</td>
<td>Altimeter</td>
</tr>
<tr>
<td>ANTI COLL LT</td>
<td>Anticollision Light</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>ATT</td>
<td>Attitude</td>
</tr>
<tr>
<td>AUTO</td>
<td>Automatic</td>
</tr>
<tr>
<td>AUX</td>
<td>Auxiliary</td>
</tr>
<tr>
<td>BATT</td>
<td>Battery</td>
</tr>
<tr>
<td>BIT</td>
<td>Built In Test</td>
</tr>
<tr>
<td>BL</td>
<td>Buttock Line</td>
</tr>
<tr>
<td>BLO</td>
<td>Blower</td>
</tr>
<tr>
<td>BRT</td>
<td>Bright</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>CAUT</td>
<td>Caution</td>
</tr>
<tr>
<td>CAUT LT</td>
<td>Caution Lights</td>
</tr>
<tr>
<td>CG</td>
<td>Center of Gravity</td>
</tr>
<tr>
<td>CKPT</td>
<td>Cockpit</td>
</tr>
<tr>
<td>CM</td>
<td>Centimeter (s)</td>
</tr>
<tr>
<td>COMM</td>
<td>Communication</td>
</tr>
<tr>
<td>CONT</td>
<td>Control</td>
</tr>
<tr>
<td>dBA</td>
<td>Decibel, “0” Type Filter</td>
</tr>
<tr>
<td>DG</td>
<td>Directional Gyro</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transport</td>
</tr>
<tr>
<td>ECS</td>
<td>Environmental Control System</td>
</tr>
<tr>
<td>ECU</td>
<td>Engine Control Unit</td>
</tr>
<tr>
<td>ELT</td>
<td>Emergency Locator Transmitter</td>
</tr>
<tr>
<td>ENCDG</td>
<td>Encoding</td>
</tr>
<tr>
<td>ENG</td>
<td>Engine</td>
</tr>
<tr>
<td>ENG ANTI ICE</td>
<td>Engine Anti Icing</td>
</tr>
<tr>
<td>°F</td>
<td>Degrees Fahrenheit</td>
</tr>
<tr>
<td>FADEC</td>
<td>Full Authority Digital Engine Control</td>
</tr>
<tr>
<td>FS</td>
<td>Fuselage Station</td>
</tr>
<tr>
<td>FT or ft</td>
<td>Foot, Feet</td>
</tr>
<tr>
<td>FWD</td>
<td>Forward</td>
</tr>
<tr>
<td>GEN</td>
<td>Generator</td>
</tr>
<tr>
<td>GOV</td>
<td>Governor</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GPU</td>
<td>Ground Power Unit</td>
</tr>
<tr>
<td>GW</td>
<td>Gross Weight</td>
</tr>
<tr>
<td>HD</td>
<td>Density Altitude</td>
</tr>
</tbody>
</table>

This document is private and confidential and is supplied on the express condition that it is not to be used for any purpose or copied or communicated to any other person without written permission from Eagle Copters Ltd.

Revision: 2
Date: 23 JAN 2018

TCCA Approved: APR 13 2018
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HG</td>
<td>Inches of Mercury</td>
</tr>
<tr>
<td>HMU</td>
<td>Hydromechanical Unit</td>
</tr>
<tr>
<td>HP</td>
<td>Pressure Altitude</td>
</tr>
<tr>
<td>HYD</td>
<td>Hydraulic</td>
</tr>
<tr>
<td>HV</td>
<td>Height-Velocity</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>ICS</td>
<td>Intercommunication System</td>
</tr>
<tr>
<td>IFL</td>
<td>Inflate</td>
</tr>
<tr>
<td>IGE</td>
<td>In Ground Effect</td>
</tr>
<tr>
<td>IGNTR</td>
<td>Ignitor</td>
</tr>
<tr>
<td>IN</td>
<td>Inch(es)</td>
</tr>
<tr>
<td>INSTR CHK</td>
<td>Instrument Check</td>
</tr>
<tr>
<td>INSTR LT</td>
<td>Instrument Light</td>
</tr>
<tr>
<td>KCAS</td>
<td>Knots Calibrated Airspeed</td>
</tr>
<tr>
<td>KG or kg</td>
<td>Kilogram(s)</td>
</tr>
<tr>
<td>KIAS</td>
<td>Knots Indicated Airspeed</td>
</tr>
<tr>
<td>KTAS</td>
<td>Knots True Airspeed</td>
</tr>
<tr>
<td>L</td>
<td>Liter(s)</td>
</tr>
<tr>
<td>LB(S) or lb(s)</td>
<td>Pound(s)</td>
</tr>
<tr>
<td>LDG LTS</td>
<td>Landing Lights</td>
</tr>
<tr>
<td>L/FUEL</td>
<td>Left Fuel</td>
</tr>
<tr>
<td>LT</td>
<td>Light</td>
</tr>
<tr>
<td>MAN</td>
<td>Manual</td>
</tr>
<tr>
<td>MCP</td>
<td>Maximum Continuous Power</td>
</tr>
<tr>
<td>MD</td>
<td>Manufacturer's Data</td>
</tr>
<tr>
<td>MGT</td>
<td>Measured Gas Temperature</td>
</tr>
<tr>
<td>MM or mm</td>
<td>Millimeter(s)</td>
</tr>
<tr>
<td>NAV</td>
<td>Navigation</td>
</tr>
<tr>
<td>NG</td>
<td>Gas Producer RPM</td>
</tr>
<tr>
<td>NP</td>
<td>Power Turbine RPM</td>
</tr>
<tr>
<td>NR</td>
<td>Rotor RPM</td>
</tr>
<tr>
<td>OAT</td>
<td>Outside Air Temperature</td>
</tr>
<tr>
<td>OBS</td>
<td>Omni Bearing Selector</td>
</tr>
<tr>
<td>OGE</td>
<td>Out of Ground Effect</td>
</tr>
<tr>
<td>OVSPD</td>
<td>Overspeed</td>
</tr>
<tr>
<td>PART SEP</td>
<td>Particle Separator</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>PASS</td>
<td>Passenger(s)</td>
</tr>
<tr>
<td>PMA</td>
<td>Permanent Magnetic Alternator</td>
</tr>
<tr>
<td>POS LT</td>
<td>Position Light</td>
</tr>
<tr>
<td>PRESS</td>
<td>Pressure</td>
</tr>
<tr>
<td>PSI</td>
<td>Pounds per Square Inch</td>
</tr>
<tr>
<td>PTT</td>
<td>Press to Test</td>
</tr>
<tr>
<td>PWR</td>
<td>Power</td>
</tr>
<tr>
<td>QTY</td>
<td>Quantity</td>
</tr>
<tr>
<td>R/FUEL</td>
<td>Right Fuel</td>
</tr>
<tr>
<td>RECP</td>
<td>Receptacle</td>
</tr>
<tr>
<td>RLY</td>
<td>Relay</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions per Minute</td>
</tr>
<tr>
<td>RTR</td>
<td>Rotor</td>
</tr>
<tr>
<td>s/w Ver</td>
<td>Software Version</td>
</tr>
<tr>
<td>SEL</td>
<td>Sound Exposure Level</td>
</tr>
<tr>
<td>SHP</td>
<td>Shaft Horsepower</td>
</tr>
<tr>
<td>SL</td>
<td>Sea Level</td>
</tr>
<tr>
<td>SPKR</td>
<td>Speaker</td>
</tr>
<tr>
<td>Sq</td>
<td>Square</td>
</tr>
<tr>
<td>SYS</td>
<td>System</td>
</tr>
<tr>
<td>T/R</td>
<td>Tail Rotor</td>
</tr>
<tr>
<td>TCA</td>
<td>Transport Canada Aviation</td>
</tr>
<tr>
<td>TEMP</td>
<td>Temperature</td>
</tr>
<tr>
<td>TRQ</td>
<td>Torque</td>
</tr>
<tr>
<td>VFR</td>
<td>Visual Flight Rules</td>
</tr>
<tr>
<td>VHF</td>
<td>Very High Frequency</td>
</tr>
<tr>
<td>VNE</td>
<td>Never Exceed Velocity</td>
</tr>
<tr>
<td>VOR</td>
<td>VHF Omnidirectional Range</td>
</tr>
<tr>
<td>WL</td>
<td>Water Line</td>
</tr>
<tr>
<td>WARN</td>
<td>Warning</td>
</tr>
<tr>
<td>XFR</td>
<td>Transfer</td>
</tr>
<tr>
<td>XMSN</td>
<td>Transmission</td>
</tr>
<tr>
<td>XPDR</td>
<td>Transponder</td>
</tr>
</tbody>
</table>

- COPYRIGHT © 2014 BY EAGLE COPTERS LTD -

This document is private and confidential and is supplied on the express condition that it is not to be used for any purpose or copied or communicated to any other person without written permission from Eagle Copters Ltd.

Revision: 2
TCCA Approved Date: 23 JAN 2018

APR 3 2018
Section 1

Limitations

Table of Contents

1.1 Introduction ... 1-4
1.2 Basis of Certification .. 1-4
1.3 Types of Operation .. 1-5
 1.3.A Passengers ... 1-5
 1.3.B Cargo ... 1-5
1.4 Flight Crew ... 1-5
1.5 Configuration ... 1-5
 1.5.A Required Equipment .. 1-6
 1.5.B Optional Equipment ... 1-6
 1.5.C Doors Removed .. 1-6
1.6 Weight and Center of Gravity ... 1-7
 1.6.A Weight ... 1-7
 1.6.B Center of Gravity .. 1-7
1.7 Airspeed ... 1-8
1.8 Altitude ... 1-8
1.9 Maneuvering ... 1-9
 1.9.A Prohibited Maneuvers ... 1-9
 1.9.B Climb and Descent .. 1-9
 1.9.C Slope Landings .. 1-9
1.10 Not Used ... 1-9
1.11 Ambient Temperature .. 1-9
1.12 Electrical ... 1-10
 1.12.A Generator ... 1-10
 1.12.B Starter ... 1-10
1.13 Power Plant .. 1-11
 1.13.A Gas Producer RPM (N_g) 1-11
 1.13.B Power Turbine RPM (N_p) 1-11
 1.13.C Measured Gas Temperature (MGT) 1-12
 1.13.D Engine Torque .. 1-12

© COPYRIGHT © 2014 BY EAGLE COPTERS LTD •
This document is private and confidential and is supplied on the express condition that it is not to be used for any purpose or copied or communicated to any other person without written permission from Eagle Copters Ltd.

Revision: 1
TCCA Approved Date: 23 AUG 2016
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.13.E</td>
<td>Fuel Pressure</td>
<td>1-12</td>
</tr>
<tr>
<td>1.13.F</td>
<td>Engine Oil Pressure</td>
<td>1-13</td>
</tr>
<tr>
<td>1.13.G</td>
<td>Engine Oil Temperature</td>
<td>1-13</td>
</tr>
<tr>
<td>1.14</td>
<td>Transmission</td>
<td>1-14</td>
</tr>
<tr>
<td>1.14.A</td>
<td>Transmission Oil Pressure</td>
<td>1-14</td>
</tr>
<tr>
<td>1.14.B</td>
<td>Transmission Oil Temperature</td>
<td>1-14</td>
</tr>
<tr>
<td>1.15</td>
<td>Rotor</td>
<td>1-14</td>
</tr>
<tr>
<td>1.15.A</td>
<td>Rotor RPM – Power On</td>
<td>1-14</td>
</tr>
<tr>
<td>1.15.B</td>
<td>Rotor RPM – Power Off</td>
<td>1-14</td>
</tr>
<tr>
<td>1.16</td>
<td>Hydraulic</td>
<td>1-15</td>
</tr>
<tr>
<td>1.17</td>
<td>Fuel and Oil</td>
<td>1-15</td>
</tr>
<tr>
<td>1.17.A</td>
<td>Fuel</td>
<td>1-15</td>
</tr>
<tr>
<td>1.17.B</td>
<td>Oil</td>
<td>1-15</td>
</tr>
<tr>
<td>1.17.B.1</td>
<td>Oil – Engine</td>
<td>1-16</td>
</tr>
<tr>
<td>1.17.B.2</td>
<td>Oil – Transmission and Tail Rotor Gearbox</td>
<td>1-16</td>
</tr>
<tr>
<td>1.18</td>
<td>Rotor Brake</td>
<td>1-17</td>
</tr>
<tr>
<td>1.19</td>
<td>Not Used</td>
<td>1-17</td>
</tr>
<tr>
<td>1.20</td>
<td>Instrument Markings and Placards</td>
<td>1-17</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1-1 – Gross weight longitudinal center of gravity limits (Sheet 1 of 2) 1-18
Figure 1-1 – Gross weight longitudinal center of gravity limits (Sheet 2 of 2) .. 1-19
Figure 1-2 – Gross weight lateral center of gravity limits (Sheet 1 of 2) 1-20
Figure 1-2 – Gross weight lateral center of gravity limits (Sheet 2 of 2) 1-21
Figure 1-3 – Placards and Decals (Sheet 1 of 4) 1-22
Figure 1-3 – Placards and Decals (Sheet 2 of 4) 1-23
Figure 1-3 – Placards and Decals (Sheet 3 of 4) 1-24
Figure 1-3 – Placards and Decals (Sheet 4 of 4) 1-25
Figure 1-4 – Ambient air temperature limitations 1-26
Figure 1-5 – Instrument Markings (Sheet 1 of 5) 1-27
Figure 1-5 – Instrument Markings (Sheet 2 of 5) 1-28
Figure 1-5 – Instrument Markings (Sheet 3 of 5) 1-29
Figure 1-5 – Instrument Markings (Sheet 4 of 5) 1-30
Figure 1-5 – Instrument Markings (Sheet 5 of 5) 1-31
Section 1

Limitations

1.1 Introduction

Compliance with limitations in this section is required by appropriate operating rules.

Anytime an operating limitation is exceeded, an appropriate entry shall be made in helicopter logbook. Entry shall state which limit was exceeded, duration of time, extreme value attained, and any additional information essential in determining maintenance action required.

Intentional use of transient limits is prohibited.

Torque events shall be recorded. A torque event is defined as a takeoff or lift, internal or external load (MD-E407-789-1).

Landings shall be recorded. Run-on landings shall be recorded separately.

A run-on landing is defined as one where there is forward ground travel of the helicopter greater than 3 feet with the weight on the skids.

1.2 Basis of Certification

This helicopter is certified under FARs Parts 27 and 36, Appendix J. Additionally, it is approved under Canadian Airworthiness Manual Chapters 516 (ICAO Chapter 11) and 527, Sections 1093 (b) (1) (ii) and (iii), 1301-1, 1557 (c) (3), 1581 (e) and 1583 (h). Additionally, the certification basis of the Eagle 407HP modification includes an equivalent level of safety (ELOS) with respect to FAR 27.917 @ 27-11, FAR 27.923 @ 27-29, FAR 27.927 @ 27-23, and FAR 27.571 @ 27-26, and compliance has been demonstrated for 27.1195 at amendment 27-5.
1.3 Types of Operation

1.3.A Passengers
Basic configured helicopter is approved for seven place seating and is certified for land operations under day or night VFR non-icing conditions.

1.3.B Cargo
The maximum allowable cabin deck loading for cargo is 75 pounds per square foot (3.7 kg per 100 cm²). The maximum allowable baggage compartment deck loading is 86 pounds per square foot (4.2 kg per 100 cm²) with a maximum allowable weight of 250 pounds (113.4 kg). Refer to MD-E407-789-1 for cargo restraint and tie-down locations.

Cargo must be properly secured by tie-down devices to prevent the load from shifting under anticipated flight and ground operations. If the mission requires both passengers and cargo to be transported together, the cargo must be loaded and secured so that it does not obstruct passenger access to exits.

1.4 Flight Crew
Minimum flight crew consists of one pilot who shall operate helicopter from the right crew seat.

Left crew seat may be used for an additional pilot for VFR day and night operations when approved dual controls are installed.

1.5 Configuration
The Eagle 407HP modification is only eligible on Bell 407 S/N 53000 to 54299.
1.5.A Required Equipment

A functional flashlight is required for night flights.
A functional Outside Air Temperature gauge.
Bell Kit 407-706-020 for gross weight increase to 5250 lb
FADEC system software shall be version 10.0.

1.5.B Optional Equipment

The snow deflector kit (BHT-407-FMS-4) shall be installed when conducting flight operations in falling and/or blowing snow.

With the Eagle 407HP modification, Cargo Hook Kit P/N 206-706-341, Cargo Hook Retrofit Kit P/N 407-704-023 and RFMS BHT-407-FMS-5 are still applicable.

Refer to appropriate flight manual supplement(s) (FMS) for additional limitations, procedures, and performance data required for optional equipment.

1.5.C Doors Removed

NOTE

Indicated altitude may be up to 100 feet lower than actual altitude with crew door(s) removed.

Flight with any combination of doors removed is approved. With litter door removed, left passenger door shall be removed. Refer to Airspeed limitations.

With door(s) removed, determine weight change and adjust ballast if necessary. Refer to Section 5.
1.6 Weight and Center of Gravity

1.6.A Weight

Maximum approved internal GW for takeoff and landing is 5250 pounds (2381 Kg) or as shown in the IGE Controllability Chart (Fig 4-6).

Minimum GW for flight is 2650 pounds (1202 kg).

Minimum weight at fuselage station 65.0 is 170 pounds (77.1 kg).

CAUTION

LOADS THAT RESULT IN GW ABOVE THE MAXIMUM INTERNAL GW SHALL BE CARRIED ON THE CARGO HOOK AND MUST BE JETTISONABLE.

Maximum approved GW for flight with jettisonable external load is 6000 pounds (2722 kg).

1.6.B Center of Gravity

The pilot is responsible for determining weight and balance to ensure gross weight and center of gravity will remain within limits throughout each flight. Refer to Section 5 for loading tables and instructions.

NOTE

Ballast as required to maintain most forward or most aft CG within GW flight limits (Figure 1-1). For standard passenger and fuel loadings, applicable Empty Weight.
1.7 Airspeed

Basic V_{NE} is 140 KIAS, sea level to 3000 feet H_D. Decrease V_{NE} for ambient conditions in accordance with AIRSPEED LIMITATIONS Placards and Decals (Figure 1-3).

V_{NE} at 93.5 to 100% TORQUE (takeoff power) is 100 KIAS, not to exceed placarded V_{NE}.

V_{NE} is 100 KIAS or placarded V_{NE}, whichever is less, when takeoff loading is in shaded area of the Gross Weight Lateral Center of Gravity Limits (Figure 1-2).

V_{NE} is 100 KIAS with any door(s) removed, not to exceed placarded V_{NE}.

V_{NE} is 100 KIAS or placarded V_{NE}, whichever is less for steady state autorotation.

Maximum allowable airspeed for sideward and rearward flight or crosswind hover is 35 KTAS.

1.8 Altitude

Maximum operating altitude is 20,000 ft H_D or 20,000 ft H_P, whichever is lower.
1.9 Maneuvering

1.9.A Prohibited Maneuvers
Aerobatic maneuvers are prohibited.

1.9.B Climb and Descent
Maximum allowable rate of climb is 2,000 feet per minute.

1.9.C Slope Landings

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
</table>

SLOPE LANDINGS HAVE BEEN DEMONSTRATED TO THE SLOPE LANDING LIMITS. OTHER CONDITIONS INCLUDING, BUT NOT LIMITED TO, WIND DIRECTION AND VELOCITY, CENTER OF GRAVITY, AND THE CONDITION OF THE SLOPE (LOOSE ROCK, SOFT MUD, SNOW, WET GRASS, ETC.) MAY LIMIT MAXIMUM SLOPE TO A VALUE LESS THAN THE PUBLISHED LIMITS.

Slope landings are limited to 10° side slopes, 10° nose up slope or 5° nose down slope.

1.10 Not Used

1.11 Ambient Temperature
Maximum sea level ambient air temperature for operation is 51.7°C (125°F) and decreases with Hp at standard lapse rate of 2°C (3.6°F) per 1000 feet.
Refer to Ambient Air Temperature Limitations chart (Figure 1-4).

Minimum ambient air temperature for operation at all altitudes is -25°C (-13°F).

ENG ANTI ICE shall be ON in visible moisture when OAT is below 5°C (40°F).

1.12 Electrical

1.12.A Generator

Continuous operation, up to 10,000 feet \(H_p \) 0 to 180 amps

Maximum continuous up to 10,000 feet \(H_p \) 180 amps

Continuous operation, above 10,000 feet \(H_p \) 0 to 170 amps

Maximum continuous above 10,000 feet \(H_p \) 170 amps

Transient, 2 minutes 180 to 300 amps

Transient, 5 seconds 300 to 400 amps

1.12.B Starter

<table>
<thead>
<tr>
<th>External Power Start</th>
<th>Battery Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 seconds ON</td>
<td>60 seconds ON</td>
</tr>
<tr>
<td>30 seconds OFF</td>
<td>60 seconds OFF</td>
</tr>
<tr>
<td>40 seconds ON</td>
<td>60 seconds ON</td>
</tr>
<tr>
<td>30 seconds OFF</td>
<td>60 seconds OFF</td>
</tr>
<tr>
<td>40 seconds ON</td>
<td>60 seconds ON</td>
</tr>
<tr>
<td>30 minutes OFF</td>
<td>30 minutes OFF</td>
</tr>
</tbody>
</table>

28 VDC GPU for starting shall be limited to 500 amps.
1.13 **Power Plant**

Honeywell HTS900-2-1D with Honeywell Service Bulletin (SB) HTS900-73-10-002

NOTE

Intentional use of any power transient is prohibited.

1.13.A **Gas Producer RPM (N_g)**

- **Continuous operation**: 0 to 101.1%
- **Takeoff power (5 minutes)**: 101.1 to 103.6%
- **Transient (15 seconds)**: 103.6 to 104.4%
- **Maximum**: 104.4%

See Figure 1-5

1.13.B **Power Turbine RPM (N_p)**

- **Minimum**: 95% rpm
- **Continuous operation**: 99 to 101% rpm
- **Transient (15 seconds)**: 101 to 115% rpm
- **Maximum**: 115% rpm
1.13.C Measured Gas Temperature (MGT)

NOTE

If an MGT overtemperature is observed during an engine start, or it is otherwise apparent that an engine overtemperature has occurred while on the ground, execute a shutdown and ventilate the engine in accordance with Section 2.5.A (Dry Motoring Procedure).

<table>
<thead>
<tr>
<th>Condition</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous operation</td>
<td>0 to 900°C</td>
</tr>
<tr>
<td>Takeoff (5 minutes)</td>
<td>900°C to 958°C</td>
</tr>
<tr>
<td>Transient (15 seconds)</td>
<td>958°C to 977°C</td>
</tr>
<tr>
<td>Maximum (Start)</td>
<td>977°C</td>
</tr>
</tbody>
</table>

1.13.D Engine Torque

<table>
<thead>
<tr>
<th>Condition</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous operation</td>
<td>0 to 93.5%</td>
</tr>
<tr>
<td>Maximum Continuous</td>
<td>93.5%</td>
</tr>
<tr>
<td>Takeoff, 5 minutes</td>
<td>93.5 to 100%</td>
</tr>
<tr>
<td>Transient, 5 seconds</td>
<td>105%</td>
</tr>
</tbody>
</table>

1.13.E Fuel Pressure

<table>
<thead>
<tr>
<th>Condition</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>8 PSI</td>
</tr>
<tr>
<td>Continuous</td>
<td>8 – 25 PSI</td>
</tr>
<tr>
<td>Maximum</td>
<td>25 PSI</td>
</tr>
</tbody>
</table>
1.13.F Engine Oil Pressure
Minimum below 45% NG 0 PSI
Minimum at idle 20 PSI
Minimum above 80% NG 42 PSI
Continuous Ops 45-80% NG 20-52 PSI
Continuous Ops 80-97% NG 52-90 PSI
Continuous Ops above 97% NG 90-100 PSI
5 minute limit 100-120 PSI
Maximum 120 PSI
Maximum cold start 200 PSI

1.13.G Engine Oil Temperature
Ground Idle Only -23 – 10°C
Continuous Operation 10 – 110°C
Maximum 110°C
1.14 Transmission

1.14.A Transmission Oil Pressure

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>30 PSI</td>
</tr>
<tr>
<td>Continuous</td>
<td>40 to 70 PSI</td>
</tr>
<tr>
<td>Maximum</td>
<td>70 PSI</td>
</tr>
</tbody>
</table>

1.14.B Transmission Oil Temperature

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>15 to 110°C</td>
</tr>
<tr>
<td>Maximum</td>
<td>110°C</td>
</tr>
</tbody>
</table>

1.15 Rotor

1.15.A Rotor RPM – Power On

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>99 to 100%</td>
</tr>
<tr>
<td>Maximum</td>
<td>100%</td>
</tr>
</tbody>
</table>

1.15.B Rotor RPM – Power Off

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>85%</td>
</tr>
<tr>
<td>Continuous</td>
<td>85 to 107%</td>
</tr>
<tr>
<td>Maximum</td>
<td>107%</td>
</tr>
</tbody>
</table>
1.16 **Hydraulic**

Hydraulic fluid type MIL-H-5606 (NATO H-515) shall be used at all ambient temperatures.

1.17 **Fuel and Oil**

1.17.A **Fuel**

Fuel conforming to following specifications may be used at all ambient temperatures:

- ASTM-D-6615, Jet B
- MIL-DTL-5624, Grade JP-4 (NATO F-40)

Fuels conforming to following specifications are limited to ambient temperatures of -32°C (-25°F) and above:

- ASTM-D-1655, Jet A or A-1
- MIL-DTL-5624, Grade JP-5 (NATO F-44)
- MIL-DTL-83133, Grade JP-8 (NATO F-34)
1.17.B Oil

1.17.B.1 Oil – Engine

Oil conforming MIL-PRF-23699 (NATO O-156) is limited to ambient temperatures above -40°C (-40°F).

NOTE

Refer to Honeywell Light Maintenance Manual for HTS900-2-1D and MD-E407-789-1 for approved oils and mixing of oils of different brands, types, and manufacturers.

1.17.B.2 Oil – Transmission and Tail Rotor Gearbox

NOTE

It is recommended DOD-PRF-85734 oil be used in transmission and tail rotor gearbox to maximum extent allowed by temperature limitations.

Oil conforming to DOD-PRF-85734 is limited to ambient temperatures above -40°C (-40°F).

Oil conforming to MIL-PRF-7808 (NATO O-148) is limited to ambient temperatures below -18°C (0°F).
1.18 **Rotor Brake**

Rotor brake application is limited to ground operation after engine has been shut down and NR has decreased to 40% or lower.

For emergency stops, apply rotor brake any time after engine is shut down.

Engine starts with rotor brake engaged are prohibited.

1.19 **Not Used**

1.20 **Instrument Markings and Placards**

Refer to Figure 1-3 for Placards and Decals.
Refer to Figure 1-5 for Instrument Markings.

Illustrations shown in Figure 1-5 are artist representations and may or may not depict actual approved instruments due to printing limitations. Instrument operating ranges and limits shall agree with those presented in this section.
Figure 1-1 – Gross weight longitudinal center of gravity limits (Sheet 1 of 2)
Figure 1-1 – Gross weight longitudinal center of gravity limits (Sheet 2 of 2)
Figure 1-2 – Gross weight lateral center of gravity limits (Sheet 1 of 2)
Figure 1-2 – Gross weight lateral center of gravity limits (Sheet 2 of 2)
407 (5250 LB) Airspeed Limitations – KIAS

<table>
<thead>
<tr>
<th>OAT °C</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>137</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>137</td>
</tr>
<tr>
<td>45</td>
<td>139</td>
<td>133</td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>133</td>
</tr>
<tr>
<td>40</td>
<td>140</td>
<td>137</td>
<td>125</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>35</td>
<td>140</td>
<td>137</td>
<td>128</td>
<td>116</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>30</td>
<td>140</td>
<td>137</td>
<td>129</td>
<td>118</td>
<td>106</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>25</td>
<td>140</td>
<td>138</td>
<td>131</td>
<td>121</td>
<td>109</td>
<td>100</td>
<td>93</td>
<td>86</td>
<td></td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>140</td>
<td>133</td>
<td>124</td>
<td>112</td>
<td>102</td>
<td>94</td>
<td>87</td>
<td>80</td>
<td></td>
<td>133</td>
</tr>
<tr>
<td>0</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>132</td>
<td>123</td>
<td>111</td>
<td>101</td>
<td>94</td>
<td>86</td>
<td>79</td>
<td>140</td>
</tr>
<tr>
<td>-25</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>135</td>
<td>130</td>
<td>125</td>
<td>114</td>
<td>102</td>
<td>95</td>
<td>88</td>
<td>140</td>
</tr>
</tbody>
</table>

MAXIMUM AUTORotation VNE 100 KIAS

Airspeed limits shown are valid only for corresponding altitudes and temperatures. Hatched areas indicate conditions which exceed approved temperature or density altitude limitations.

Location: Forward of Overhead Console
FUEL
FUEL SYSTEM USABLE CAPACITY
BASIC AIRCRAFT 127 U.S. GALLONS - 483 LITERS
WITH 407-706-011 AUX KIT 147 U.S. GALLONS = 559 LITERS
SEE FLIGHT MANUAL FOR APPROVED FUELS

Location: Above fuel filler cap

THIS HELICOPTER MUST BE OPERATED IN COMPLIANCE WITH THE OPERATING LIMITATIONS SPECIFIED IN THE APPROVED FLIGHT MANUAL

Location: Bottom and centered on instrument panel

DO NOT APPLY ROTOR BRAKE ABOVE 40% RPM

Location: Near rotor brake (if installed)

THIS AIRCRAFT IS EQUIPPED WITH A HONEYWELL HTS900-2-1D ENGINE AND IS APPROVED FOR DAY/NIGHT VFR OPERATIONS ONLY. SEE EAGLE COPTERS LTD FLIGHT MANUAL SUPPLEMENT FMS-E407-789-1 FOR MODIFIED OPERATING LIMITATIONS, PROCEDURES AND PERFORMANCE DATA.

Location: On instrument panel in clear view of pilot

Figure 1-3 – Placards and Decals (Sheet 2 of 4)
CARGO MUST BE SECURED IN ACCORDANCE WITH FLIGHT MANUAL INSTR

Location: Inside of baggage door

<table>
<thead>
<tr>
<th>Outside Air Temperature, (\degree F) and above</th>
<th>5 (-15)</th>
<th>0 (-18)</th>
<th>-4 (-20)</th>
<th>-13 (-25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Ng Takeoff Limit, Percent of 100% Ng</td>
<td>Observe takeoff and maximum continuous speed limits</td>
<td>102.6</td>
<td>103.1</td>
<td>102.1</td>
</tr>
</tbody>
</table>

Location: Above pilot windshield

MAX ALLOWABLE WEIGHT 250 LBS.
MAX ALLOWABLE WEIGHT PER SQ. FT. 86 LBS.

Location: Inside of baggage door

Figure 1-3 – Placards and Decals (Sheet 3 of 4)
FUEL CAPACITY
BASIC 869 LBS
WITH AUX 1005 LBS
(JET A AT 15°C)

Location: Instrument panel

Location: Instrument panel and passenger compartment

Figure 1-3 – Placards and Decals (Sheet 4 of 4)
Figure 1-4 – Ambient air temperature limitations

EXAMPLE: AT H₈ = 7000 FT
MAX OAT = 33.8°C (100°F)
MIN OAT = -25°C (-13°F)
Engine Oil Temperature and Pressure

- Engine Oil Temperature
 - -23 to 10°C Minimum
 - 10 to 110°C Continuous Operation
 - 110°C Maximum

- Engine Oil Pressure
 - 0 PSI (minimum below 45% Ng)
 - 20 PSI (minimum at idle)
 - 20 to 52 PSI (continuous operation 45-80% Ng)
 - 42 PSI (minimum above 80% Ng)
 - 52 to 90 PSI (continuous operation 80-97% Ng)
 - 90 to 100 PSI (continuous operation above 97% Ng)
 - 100 to 120 PSI (5 minute limit)
 - 120 PSI (maximum)
 - 200 PSI (maximum cold start)

Transmission Oil Temperature and Pressure

- Transmission Oil Temperature
 - 15 to 110°C Continuous Operation
 - 110°C Maximum

- Transmission Oil Pressure
 - 30 PSI Minimum
 - 40 to 70 PSI Continuous Operation
 - 70 PSI Maximum

Figure 1-5 – Instrument Markings (Sheet 1 of 5)
Gas Producer Tachometer

- **0 to 101.1%**: Continuous Operation
- **101 to 103.6%**: 5 Minute Takeoff Range
- **103.6 to 104.4%**: Transient Limit (15 Sec)
- **104.4%**: Maximum

Torquemeter

- **0 to 93.5%**: Continuous Operation
- **93.5 to 100%**: 5 min Takeoff Range
- **100%**: Maximum

Figure 1-5 – Instrument Markings (Sheet 2 of 5)
Measured Gas Temperature (MGT)

- 0 to 900°C: Continuous Operation
- 900 to 958°C: 5 min Takeoff Range
- 958°C: Maximum for Takeoff
- 977°C: Maximum for Start

Airspeed Indicator

- 0 to 140 knots: Continuous Operation
- 100 knots: Maximum for autorotation
- 140 knots: Maximum

Figure 1-5 – Instrument Markings (Sheet 3 of 5)
Dual Tachometer

Power Tachometer

- 95 to 99% Transient
- 99 to 101% Continuous Operations
- 101 to 105% Transient
- 105% Maximum
- 115% Transient limit (15 sec)

Rotor Tachometer

- 85% Minimum (Power Off)
- 85 to 107% Continuous Operation (Power Off)
- 107% Maximum (Power Off)

Fuel Quantity

Fuel Quantity (Jet A 6.8 lbs/gal)

- 0 LBS All tanks empty (zero useable)
- 193.1 LBS Forward tank empty
- 869 LBS Forward and aft tanks full
- 1005 LBS Forward, aft and auxiliary tanks full

Figure 1-5 – Instrument Markings (Sheet 4 of 5)
Fuel Pressure and Ammeter

DC Load
- 0 to 180 Amps – Continuous Operation
- 170 Amps – Maximum continuous above 10,000 ft HPA
- 180 Amps – Maximum
- 300 Amps – Maximum transient, 2 minutes
- 400 Amps – Maximum transient, 5 seconds

Fuel Pressure
- 8 PSI – Minimum
- 8 to 25 PSI – Continuous Operation
- 25 PSI – Maximum

Vertical Speed Indicator

- 2000 feet per minute up – Maximum

Figure 1-5 – Instrument Markings (Sheet 5 of 5)
Section 2

Normal Procedures

Table of Contents

2.1 Introduction ... 2-3
 2.1.A Cold Weather Operations ... 2-3
 2.1.B Hot Weather Operations .. 2-4

2.2 Flight Planning ... 2-4

2.3 Preflight Check ... 2-5
 2.3.A Before Exterior Check .. 2-5
 2.3.B Exterior Check ... 2-5

2.4 Interior and Prestart Check ... 2-13

2.5 Engine Start ... 2-18
 2.5.A Dry Motoring Run – No Ignition 2-22
 2.5.B Wet Motoring Run – No Ignition 2-23

2.6 Systems Check ... 2-24
 2.6.A Preliminary Hydraulic Systems Check 2-24
 2.6.B Deleted ... 2-25
 2.6.C Engine Run-Up .. 2-25
 2.6.D Hydraulic Systems Check ... 2-26

2.7 Before Takeoff ... 2-27

2.8 Takeoff ... 2-29

2.9 In-Flight Operations ... 2-29

2.10 Descent and Landing ... 2-30

2.11 Engine Shutdown .. 2-31

2.12 Postflight Check .. 2-35
List of Figures

Figure 2-1 – Preflight Check Sequence .. 2-36
Section 2

Normal Procedures

2.1 Introduction

This section contains instructions and procedures for operating the helicopter from planning stage, through actual flight conditions, to securing helicopter after landing.

Normal and standard conditions are assumed in these procedures. Pertinent data in other sections is referenced when applicable.

Instructions and procedures contained herein are written for purpose of standardization and are not applicable to all situations.

2.1.A Cold Weather Operations

Battery starts have been demonstrated to -5°C (23°F) with 34 amp-hour battery. APU starts have been demonstrated between -5°C (23°F) and -25°C (-13°F). Aircraft operation has been demonstrated down to -25°C (-13°F).

CAUTION

PERMANENT ENGINE DAMAGE MAY OCCUR IF ENGINE OIL TEMPERATURE IS NOT MAINTAINED AT OR ABOVE -10°F (-23°C) DURING COLD WEATHER STARTING.

Cold weather starting at ambient temperatures below -10°F (-23°C) requires
that engine oil temperature be maintained at or above -10°F (-23°C). This limitation applies to the engine oil pump, oil supply lines, and aircraft-mounted oil tank.

NOTE

It may be necessary to use winter covers and/or heaters in the nacelle to maintain engine oil temperature above -10°F (-23°C).

2.1.B Hot Weather Operations

CAUTION

IF HOVERING WITH A TAILWIND GREATER THAN 10 KNOTS AT OAT ABOVE 37.8°C (100°F), CLOSELY MONITOR ENGINE OIL TEMPERATURE. THE OIL TEMPERATURE MAY BE REDUCED BY EITHER TURNING INTO WIND, REDUCING POWER OR TRANSITION TO FORWARD FLIGHT.

2.2 Flight Planning

Each flight should be planned adequately to ensure safe operations and to provide pilot with data to be used during flight.

Check type of mission to be performed and destination.

Determine that helicopter has adequate performance to complete mission utilizing appropriate performance charts in Section 4.

Determine that helicopter weight and balance will be within limits during entire mission. Utilize appropriate weight and balance charts in Section 5 and limitations in Section 1.
2.3 Preflight Check

Pilot is responsible for determining whether helicopter is in condition for safe flight. Refer to Figure 2-1 for preflight check sequence.

NOTE

Preflight check is not intended to be a detailed mechanical inspection but a guide to check condition of helicopter. This check may be made as comprehensive as conditions warrant at the discretion of pilot.

All areas checked shall include a visual check for evidence of corrosion, particularly when helicopter is flown near or over salt water or in areas of high industrial emissions.

2.3.A Before Exterior Check

1. Flight planning – Completed.

2. Publications – Check.

3. GW and CG – Computed.

5. Battery – Connected.

2.3.B Exterior Check

2.3.B.1 FUSELAGE – CABIN RIGHT SIDE
WARNING

FAILURE TO REMOVE ROTOR TIEDOWNS BEFORE ENGINE STARTING MAY RESULT IN SEVERE DAMAGE AND POSSIBLE INJURY.

1. All main rotor blades — Tiedowns removed, condition.
2. Right static port — Condition.
3. Cabin doors and hinge bolts — Condition and security.
6. Forward and aft crosstube fairings (if installed) — Secured, condition, and aligned.

2.3.B.2 FUSELAGE – CENTER RIGHT SIDE

1. Engine inlet — Condition; remove inlet covers.
2. Cabin roof, transmission cowling, and engine air inlet area — Cleaned of all debris, accumulated snow and ice; cowling secured.
3. Forward fairing — Secured.
4. Transmission — Check oil level. Check oil level within OIL LEVEL markings.
5. Transmission oil cooler lines — Condition and security.
7. Main driveshaft — Condition.

NOTE

If helicopter is not parked on a level surface, fuel sump may not properly drain contaminants.

10. Fuel sump — Drain fuel sample as follows:

 a. RIGHT and LEFT FUEL BOOST/ XFR circuit breaker switches — OFF.
 b. BATT switch — BATT (on).
 c. EMERG. FUEL VALVE switch — OFF.
 d. FWD and AFT FUEL SUMP drain buttons — Press, drain sample, then release.

11. Airframe fuel filter — Drain and check before first flight of day as follows:

 a. RIGHT and LEFT FUEL BOOST/ XFR circuit breaker switches — LEFT and RIGHT (on).
 b. EMERG. FUEL VALVE switch — ON.
 c. Fuel filter drain valve — Open, drain sample, then close.

13. EMERG. FUEL VALVE switch — ON.

14. LEFT and RIGHT FUEL BOOST/XFR circuit breaker switches — OFF.

15. BATT switch — OFF.

16. Power plant area:

This document is private and confidential and is supplied on the express condition that it is not to be used for any purpose or copied or communicated to any other person without written permission from Eagle Copters Ltd.

Revision: 1

TCCA Approved Date: 23 AUG 2016
a. Main driveshaft aft flexure — Condition.
b. Engine and accessories — Condition, security of attachments, evidence of oil leakage, cracks or damage.
c. Engine mounts — Condition and security.
e. FMU — Security and condition, evidence of leakage.
f. Combustion Housing and exhaust duct — Condition and security, foreign matter, cracks, damage, dryness, hot spots, buckling.
 Remove covers and plugs.
g. Oil Filter Bypass Indicator — Check retracted
h. Hoses and tubing — Chafing, security, condition, verify no leaks.
i. Oil and Fuel drains — Clear.
j. Wire harness — Chafing, security, condition.
k. Power Turbine Rotor — Check for foreign matter and damage.
l. Oil cooler blower inlet duct and screen — Clear obstructions, condition and security.

17. Engine cowl — Secured.

18. Oil tank — Leaks, security, cap secured and correct quantity.

19. Access door — Secured.

20. Aft and upper fairing — Secured.

2.3.B.3 FUSELAGE – AFT RIGHT SIDE

1. Fuselage — Condition.

2. Tail rotor driveshaft cover — Condition and security.

3. Tailboom — Condition.

4. Horizontal stabilizer area:
 a. Horizontal stabilizer — General condition and security of attachment.
2.3.B.4 FUSELAGE – FULL AFT

2. Tail rotor guard — Condition and security.
5. Tail rotor gearbox — Oil level, leaks and security.
6. Tail rotor — Tiedown removed, condition and free movement.
7. Tail rotor controls — Condition and security.
8. Tail rotor blades:
 a. General condition.
 b. Tip block — Security and seal integrity.
 c. Internal blade root — Clear of snow and ice.
9. Tail rotor yoke — Condition, evidence of static stop contact damage (deformed static stop yield indicator).

2.3.B.5 FUSELAGE – AFT LEFT SIDE

1. Tailboom — Condition.
2. Tail rotor driveshaft cover — Condition and security.
3. Horizontal stabilizer area:
 a. Horizontal stabilizer — General condition and security of
attachment.
 b. Position light — Condition and security.
 c. Forward and aft section of left upper stabilizer support to tailboom area — Condition of tailboom.

5. Forward tail rotor driveshaft coupling — Condition of splined adapter.

6. Oil cooler blower shaft hanger bearings — Evidence of grease leakage and overheating.

7. Oil cooler blower — Clear of obstructions and condition.

8. Oil cooler — Condition and leaks.

9. Oil cooler blower access door — Secured.

10. Oil tank sight glass — Check oil level.

11. Aft and upper fairing — Secured.

14. Power plant area:
 a. Engine and accessories — Condition, security of attachments, evidence of oil leakage, cracks or damage.
 b. Engine mounts — Condition and security.
 c. Combustion housing and Exhaust duct — Condition and security, foreign matter, cracks, damage, dryness, hot spots, buckling.
 d. Evidence of fuel and oil leaks.
 e. Fuel filter bypass indicator — Check retracted.
 f. Hoses and tubing for chafing and condition, verify no leaks.
 g. Pneumatic lines — Condition and security.
15. Transmission area:
 a. Transmission mounts — Condition and security of elastomeric mounts.
 b. Transmission oil filter — Ensure bypass indicator not extended.
 c. Main driveshaft — Condition.
 d. Transducers and pressure lines — Condition and security.
 e. Access door — Secured.

2.3.B.6 FUSELAGE – CABIN ROOF

1. Main rotor dampers and fairing — Condition and security.

2. Main rotor hub, yoke and frahm — Condition and security.

3. Main rotor blade and skin — Condition.

4. Pitch horn bearing — Wear and security.

5. Main rotor pitch links — Condition and security of attachment bolts and locking hardware.

6. Swashplate assembly — Condition, security of attached controls, and boot
7. Control linkages to swashplate — Condition, security of attachment bolts and locking hardware.

9. Hydraulic reservoir filler cap — Closed and locked.

11. Hydraulic actuators and lines — Condition, security, interference, leakage.

12. ECU – Condition and security.

2.3.B.7 FUSELAGE – CABIN LEFT SIDE

1. Forward fairing and access door — Secured.

2. Cabin doors and hinge bolts — Condition and security.

4. Hydraulic reservoir — Check fluid level.

5. Landing gear — Condition and ground handling wheel removed.

6. Forward and aft crosstube fairings (if installed) — Secured, condition, and aligned.

7. Left static port — Condition.

2.3.B.8 FUSELAGE – FRONT

2. Windshield — Condition and cleanliness.

3. Battery and vent lines — Condition and security.

4. HOUR METER circuit breaker — In.

5. Battery access door — Secured.

6. Pitot tube — Cover removed, clear of obstructions.

7. External power door — Condition and security.

2.4 Interior and Prestart Check

1. Cabin interior — Clean, equipment secured.

2. Fire extinguisher — Installed and secured.

3. Cabin loading — Maintain CG within limits.

4. Passenger seat belts — Secured.

5. Copilot seat belt — Secured (if solo).

7. Emergency Pedal Stop Release – Down and witness wired

8. Throttle — Closed.

9. LDG LTS switch — OFF.
10. Communications switches — Set.

11. Emergency Fuel Valve - ON

12. Altimeter — Set.

14. Overhead switches — Set:
 a. BATT switch — OFF.
 b. GEN switch — OFF.
 c. PART SEP switch (if installed) — OFF.
 d. ANTI COLL LT switch — ANTI COLL LT (on).
 e. HYD SYS switch — HYD SYS (on).
 f. CABIN LT/PASS switch — OFF.
 g. POS LT switch — As desired.
 h. DEFOG switch — OFF.
 i. PITOT HEATER switch — OFF.
 j. ENG ANTI ICE switch — OFF.
 k. AVIONICS MASTER switch — OFF.
 l. HEATER switch (if installed) — OFF.
 m. INSTR LT rheostat — OFF.

15. Overhead circuit breaker switches — OFF.

17. Rotor brake handle — Up and latched.

CAUTION

28 VDC EXTERNAL POWER SOURCE SHALL BE 500 AMPERES OR LESS TO REDUCE RISK OF STARTER DAMAGE FROM OVERHEATING.
18. EXTERNAL POWER — Connected (if used).

19. BATT switch — ON for battery start, ON for GPU start, OFF for battery cart start. Observe the following:
 a. Low rotor rpm, engine out and FADEC fail audio horn activated.
 b. MGT, Fuel Qty, Tq and Ng Indicators
 • Display 8.8.8.8.
 • Display software version
 • Display 0.0
 c. MGT, Tq and Ng Indicators
 • Display 0 – indicates no exceedance
 • Display 0E – indicates an exceedance
 • Display details of exceedance
 d. MGT, Ng Indicators
 • Display last flight cycle count for power turbine and gas generator respectively.

 NOTE

 Np/Nr Fuel Pressure, Ammeter, Xmsn Oil Pressure and Engine Oil pressure and temperature needles move from park position to 0.0 or ambient.

 NOTE

 As part of the instrument self-test FADEC warning/caution lights/horn will cycle on and off.

 NOTE

 After instrument build-in test, no engine related caution/warning should be annunciated.

20. HORN MUTE button — Press to mute.
21. Caution lights — ENG OUT, XMSN OIL PRESS, RPM, HYDRAULIC SYSTEM, GEN FAIL, L/FUEL BOOST, R/FUEL BOOST, L/FUEL XFR, R/FUEL XFR and ENG OIL PRESS will be illuminated.

NOTE

L/FUEL XFR and R/FUEL XFR will not be illuminated when forward fuel tank is empty.

22. PEDAL STOP PTT switch annunciator:

Pedals — Centered.

Press — Verify PEDAL STOP caution and ENGAGED annunciator illuminated and left pedal travel restricted.

Release — Verify PEDAL STOP caution and ENGAGED annunciator extinguished and both pedals travel unrestricted.

23. Flight controls — Loosen frictions; check travel and verify CYCLIC CENTERING light operation; position for start. Tighten friction as desired.

24. Throttle — Check freedom of travel and appropriate operation at OFF, IDLE, and FLY positions. Return throttle to OFF position.

NOTE

With INSTR LT rheostat on and CAUT LT switch positioned to DIM, caution lights are dimmed to a fixed intensity and cannot be adjusted by INSTR LT rheostat.

25. INSTR LT rheostat — As desired.

26. CAUT LT switch — As desired.

27. FUEL BOOST/XFR circuit breaker switches — LEFT (on) and RIGHT (on) and verify all boost and transfer caution lights extinguish.
28. FUEL pressure — Check.
29. CAUTION LT TEST button — Press to test.
30. LCD TEST button — Press to test, if desired.
31. FADEC FAIL TEST button — Press to test.
32. FIRE DETECT TEST button – Press to test.
33. CHIP DETECTOR TEST button – Press to test.
34. EMERG FUEL VALVE switch — ON, guard closed, FUEL VALVE light illuminates then extinguishes.
35. FUEL QTY — Check TOTAL and FWD tank quantity.
36. OAT/VOLTS display — Check OAT and select VOLTS.
2.5 **Engine Start**

CAUTION

ANY ATTEMPT TO START ENGINE WHEN VOLTAGE IS BELOW 24 VOLTS MAY RESULT IN A HOT START. MONITOR FOR FADEC FAILURE. IF FADEC FAILS (FADEC FAIL WARNING LIGHT), ABORT START BY ROLLING THROTTLE TO OFF AND ENGAGE STARTER TO REDUCE MGT.

CAUTION

ABORT START IMMEDIATELY (SEE SECTION 3.3.L) IF ANY OF THE FOLLOWING EVENTS OCCURS:
1) Ng STOPS INCREASING PRIOR TO IDLE RPM.
2) ANY UNUSUAL NOISE OR VIBRATION OCCURS.
3) THE ECU FAILS.
4) THE ROTORCRAFT DC ELECTRICAL POWER FAILS OR DROPS BELOW 18 VDC.

The following normal start procedure is applicable for engine starts to IDLE or FLY. Ground idle is approximately 58 to 64 percent Ng. Starts accomplished with the engine throttle in the FLY position will result in engine acceleration up to the normal operating 100% Np/Nr.
NOTE

ECU power-up testing will be terminated if the engine start sequence is initiated prior to the completion of BIT testing. If power-up testing is interrupted, FADEC warnings, cautions, and advisories will not be displayed.

NOTE

No cockpit indication of Ng is displayed until Ng is greater than 5 percent, and no cockpit indication of Np is displayed until Np is greater than 5 percent.

1. Collective — Minimum pitch
2. Rotorcraft electrical power — ON

NOTE

Allow 20 seconds for the ECU to complete its power-up testing prior to proceeding. Observe warnings, cautions, and advisories panel and verify that no engine indications are illuminated.

3. Anti-ice switch — OFF
4. Both Fuel pump switches — ON
5. Bleed air switch — OFF
6. Generator switch — OFF
7. Cyclic and pedals — Centered and CYCLIC CENTERING light extinguished.
8. Throttle — IDLE or FLY

9. Warning, caution, advisory panel — NORMAL No warnings or cautions

10. Starter switch — Hold for > 0.5 seconds (Activate within 60 seconds of PLA movement.)

11. Warning, caution, advisory panel — START

After this sequence has been completed, the engine ECU will provide automatic sequencing and control of the engine starter/ignition relay, providing electrical power to the starter during the engine starting cycle. Engine fuel flow is automatically regulated to control the Ng rate of acceleration and to maintain turbine temperature within limits. The engine should accelerate to IDLE or FLY, as selected, and stabilize within 1 minute.

12. Ng, Np, MGT, OP, and OT – NORMAL

NOTE

The ECU will automatically cut off fuel flow:
(a) in the event of a failure that results in turbine overtemperature during a start attempt,
(b) if Ng does not reach 10 percent in 10 seconds,
(c) if light-off does not occur within 35 seconds, or
(d) if idle speeds are not achieved in 60 seconds.

NOTE

To reinstate the start sequence, it will be necessary to terminate the start sequence by returning the engine PLA to OFF.

13. Warning, caution, advisory panel – NORMAL
NOTE

Dispatching the aircraft with any FADEC system faults illuminated is not permitted, except as noted in ICA-E407-789 Chapter 76-00-00 paragraph 76.4.3.

14. Engine and transmission oil pressures — Check.

NOTE

If dual controls are installed, guard throttle to prevent inadvertent manipulation from co-pilot position.

15. BATT switch — ON (if applicable).

NOTE

Ensure BATT switch is positioned to ON prior to disconnecting external power source.

16. EXTERNAL POWER — Disconnect and close door (if applicable).

17. GEN switch — GEN (on); observe GEN FAIL light extinguishes.

NOTE

Turn generator OFF if ammeter indication drops to zero amps after an initial full scale indication. One reset is allowed. RESET generator and then turn generator back ON.

18. Voltmeter — 28.5 ±0.5 volts.

19. FADEC Reset – Test fluctuations on gauges
20. FLIGHT INSTR circuit breaker switches (3) (if installed) — DG, ATT and TURN (on).

NOTE

If dual controls are installed, guard throttle to prevent inadvertent manipulation from co-pilot position.

2.5.A Dry Motoring Run – No Ignition

The following procedure is used for checks that require core engine rotation but do not require fuel flow.

1. Inlet and exhaust – Clear
2. Oil quantity – Adequate
3. Collective – Minimum pitch
4. Rotorcraft electrical power – ON
5. Ignition circuit breaker – Pulled
6. Starter switch – OFF
7. Throttle – OFF
8. Fuel pump switch – ON (for fuel pump lubrication)
9. Starter switch – START (switch held)
10. Ng and Np rpm – Indicating
11. Oil pressure – Positive indication
NOTE

A 15- to 30-second cranking period is recommended for ventilating the engine immediately after a hot shutdown or a start abort due to overtemperature. Longer cranking is acceptable for ventilating the engine depending on starter duty cycle and available power. Additional ventilation motoring cycles spaced 2 to 3 minutes apart are recommended if not limited by starter duty cycle and available power.

12. Starter switch – OFF

13. Fuel Pump switch – OFF (after coast down)

2.5.B Wet Motoring Run – No Ignition

The following procedure is used for checks requiring core engine rotation and fuel flow but no ignition. Failure to disconnect the fuel manifold before performing a wet motoring run may result in an over-temperature event or engine fire.

1. Inlet and exhaust – Clear

2. Oil quantity – Adequate

3. Collective – Minimum pitch

4. Rotorcraft electrical power – ON

5. Ignition circuit breaker – Pulled

6. Starter switch – OFF
7. Throttle – IDLE
8. Both Fuel pump switches – ON
9. Starter switch – START (switch held)
10. Ng and Np rpm – Indicating
11. Oil pressure – Positive indication
12. Fuel Flow – Positive indication

The engine may be motored with fuel ON for 15 seconds. Observe starter limits.

13. Throttle – OFF

Check that fuel flow drops to zero, ensuring positive fuel shutoff.

Continue motoring for 1 minute to purge the engine of residual fuel. Observe starter duty cycle.

14. Starter switch – OFF

15. Both Fuel pump switches – OFF (after coast down)

2.6 Systems Check

2.6.A Preliminary Hydraulic Systems Check

NOTE

Uncommanded control movement or motoring with hydraulic system off may indicate hydraulic system
malfunction.

1. HYD SYS switch — OFF.
2. HYDRAULIC SYSTEM caution light — Illuminated.
3. HYD SYS switch — HYD SYS (on).
4. HYDRAULIC SYSTEM caution light — Extinguished.

2.6.B Deleted

2.6.C Engine Run-Up

1. Throttle — Increase smoothly to FLY detent position while monitoring torque below 40%. Check RPM warning light extinguished at 95% NR.

2. NR and NP needles — Check matching and indicating 100%.

NOTE

Overhead circuit breakers highlighted with arrow graphic; are powered through AVIONICS MASTER switch.

3. AVIONICS MASTER switch — AVIONICS MASTER (on).
4. ELT (if installed) — Check for inadvertent transmission.
5. Flight controls — Check freedom with minimum friction.
6. ENG ANTI ICE switch — ENG ANTI ICE (on); check for MGT increase and illumination of ENGINE ANTI-ICE light.
NOTE

If temperature is below 5°C (40°F) and visible moisture is present, ENG ANTI ICE shall be on.

7. ENG ANTI ICE switch — OFF; check MGT returns to normal and ENGINE ANTI-ICE light extinguishes; then ENG ANTI ICE (on) if required.

8. PITOT HEATER — Confirm operation (increase in ammeter load).

2.6.D Hydraulic Systems Check

NOTE

Hydraulic systems check is to determine proper operation of hydraulic actuators for each flight control system. If abnormal forces, unequal forces, control binding, or motoring are encountered, it may be an indication of a malfunctioning flight control actuator.

2. NR — 100% RPM.
3. HYD SYS switch — OFF.
4. HYDRAULIC SYSTEM caution light — Illuminated.
5. Cyclic — Centered.
6. Cyclic control — Check normal operation by moving cyclic forward and aft, then left and right (approximately 1 inch). Center cyclic.
7. Collective — Check normal operation by increasing collective slightly (1 to 2 inches). Repeat two to three times as required. Return to full down position.
8. Pedals — Check normal operation by displacing pedals slightly (1 inch).
9. HYD SYS switch — HYD SYS (on).
10. HYDRAULIC SYSTEM caution light — Extinguished.
11. Cyclic and collective friction — Set as desired.

2.7 Before Takeoff

1. ENG ANTI ICE switch — As required.
2. PITOT HEATER switch — As required.
3. Light switches — As required.
4. INSTR LT rheostat — As desired.

NOTE
For night flight, it is recommended to point the map light at the flight instruments and set to a low intensity. Sufficient night lighting will be provided in the event of an instrument lighting failure.

5. Radio(s) — Check as required.

[CAUTION]
FAILURE TO POSITION AND MAINTAIN THROTTLE IN
FLY DETENT POSITION PRIOR TO TAKEOFF AND DURING NORMAL FLIGHT OPERATIONS CAN LIMIT AVAILABLE ENGINE POWER.

NOTE

The time required for moving collective from takeoff to the no-load position must be greater than 0.5 seconds. Collective movements of a shorter duration may result in Np overspeed.

NOTE

Dispatching the aircraft with any FADEC system faults is not permitted, except as noted in ICA-E407-789 Chapter 76-00-00 paragraph 76.4.3.

7. Throttle — Open to FLY detent position. Check 99 to 100% NR/NP.

8. Engine, transmission, and electrical instruments — Within limits.

10. FUEL QTY — Note indication.

11. FUEL QTY FWD TANK button — Press, note fuel remaining in forward cell.

CAUTION

IN REARWARDS FLIGHT (OR WITH WIND UP THE TAIL) BETWEEN 135 deg AND 225 deg AZIMUTHS, THERE IS A POSSIBILITY OF GAS RE-INGESTION WHICH COULD RESULT IN A SUDDEN RISE IN MGT AND/OR NG.
2.8 Takeoff

1. Rear facing seat headrests — Adjusted to proper position.

 NOTE

 During takeoffs disregard CYCLIC CENTERING light and position cyclic as required.

2. Collective — Increase to hover.

3. Directional control — As required to maintain desired heading.

4. Cyclic — Apply as required to accelerate smoothly.

5. Increase collective, up to 5% torque above hover power, to obtain desired rate of climb and airspeed. Once clear of the HV diagram shaded areas, adjust power and airspeed as desired.

6. PEDAL STOP PTT switch — Check ENGAGED annunciator illuminated above 55 ±5 KIAS.

2.9 In-Flight Operations

1. AIRSPEED — As desired (not to exceed VNE at flight altitude).

 CAUTION

 AT HIGH POWER AND HIGH AIRSPEED, CYCLIC ONLY ACCELERATIONS AND MANEUVERING MAY SIGNIFICANTLY INCREASE MGT AND TORQUE WITH
NO COLLECTIVE INPUT. THIS INCREASE IS MORE RAPID AT LOWER OAT.

NOTE

Pilot shall keep feet on tail rotor pedals at all times. Do not press PEDAL STOP PTT switch in flight.

2. PEDAL STOP PTT switch — Check ENGAGED annunciator illuminated above 55 ±5 KIAS.

3. ENG ANTI ICE and PITOT HEATER switches — ENG ANTI ICE and PITOT HEATER switches on in visible moisture when ambient temperature is at or below 5°C (40°F).

4. Altimeter — Within limits.

5. FUEL QTY FWD TANK button — Press, note forward fuel tank indication.

NOTE

Full forward fuel tank quantity (approximately 256.0 pounds) will be indicated at approximately 770.0 pounds or greater total fuel. Fuel transfer will be complete at approximately 193.1 pounds total fuel.

2.10 Descent and Landing

NOTE

Large reductions in collective pitch at heavy GW may permit NR to increase independent of NP (needles split). Main rotor may be reengaged with a smooth increase in collective pitch.
1. Rear facing seat headrests — Adjusted to proper position.

2. Flight controls — Adjust friction as desired.

3. Throttle — Fly detent position. Check 99 to 100% NP.

4. Flight path — As required for type of approach.

5. ENG ANTI ICE — As required.

6. LDG LTS switch — As desired.

NOTE

During run-on or slope landings, disregard CYCLIC CENTERING light and position cyclic as required. After landing is completed and collective is full down, reposition cyclic so that CYCLIC CENTERING light is extinguished.

7. PEDAL STOP PTT switch — Check ENGAGED annunciator extinguished below 50 ±5 KIAS.

2.11 Engine Shutdown

2. Cyclic and pedals — Centered and CYCLIC CENTERING light extinguished.

3. Cyclic friction — Increase so that cyclic maintains centered position.

4. LDG LTS switch — OFF.

5. Throttle — IDLE. Check RPM warning light illuminated and audio on at
95% NR.

NOTE

If dual controls are installed, guard throttle to prevent inadvertent manipulation from co-pilot position.

6. HORN MUTE button — Press to mute.
7. MGT — Stabilize at idle for 2 minutes.
9. ENG ANTI ICE switch — OFF.
10. FLIGHT INSTR circuit breakers switches (if installed) — OFF.
11. FUEL BOOST/XFR LEFT circuit breaker switch — OFF.

NOTE

Left fuel boost and transfer pumps will continue to operate until either LEFT FUEL BOOST/XFR circuit breaker switch (highlighted with yellow border) or EMERG FUEL VALVE switch is positioned to OFF. These pumps operate directly from battery and will not be deactivated when BATT switch is OFF. Battery power will be depleted if both switches remain on.

12. EMERG FUEL VALVE – ON.
13. ELT (if installed) — Check for inadvertent transmission.
14. AVIONICS MASTER switch — OFF.
15. GEN switch — OFF.
16. IDLE REL switch — Press and hold.
17. Throttle — OFF; Check MGT and NG decreasing, ENGINE OUT warning light illuminated and audio on at 55 ±1%.

18. HORN MUTE button — Press to mute.

NOTE

Overspeed system including hydromechanical and electromechanical parts in the FMU and the electrical parts of the ECU, is checked at every normal shutdown, thus not requiring an Overspeed Test.

19. Dry motor the engine for 10 seconds after Ng indicates zero.

[CAUTION]

AVOID RAPID ENGAGEMENT OF ROTOR BRAKE IF HELICOPTER IS ON ICE OR OTHER SLIPPERY OR LOOSE SURFACE TO PREVENT ROTATION OF HELICOPTER.

20. Rotor brake — Apply full rotor brake at or below 40% NR. Return rotor brake handle to stowed position just prior to main rotor stopping.

[CAUTION]

DO NOT INCREASE COLLECTIVE OR APPLY LEFT TAIL ROTOR PEDAL TO SLOW ROTOR DURING COASTDOWN.

21. Pilot — Remain on flight controls until rotor has come to a complete stop.
22. ANTI COLL LT switch — As desired.

23. All remaining overhead switches, except HYD SYS switch — OFF.

24. Below 5%Ng – Record power turbine cycle indicated by MGT indicator

25. Below 5% Ng- Record gas producer cycle indicated by Ng indicator.

26. Check for FADEC MAINT or FADEC DEGRADED light.

CAUTION

APPLICABLE MAINTENANCE ACTION MUST BE PERFORMED PRIOR TO FURTHER FLIGHT IF A FADEC MAINT LIGHT OR FADEC DEGRADED LIGHT HAS ILLUMINATED DURING THE PREVIOUS FLIGHT OR ON ENGINE SHUTDOWN.

WARNING

ENSURE ENGINE ROTATION HAS COMPLETELY STOPPED PRIOR TO POSITIONING BATT SWITCH TO OFF.

27. BATT switch — OFF, with NG at 0%.

NOTE

If shutting down at, or refueling to, between approximately 193.1 to 211.1 pounds total fuel quantity, up to 18.0 pounds of fuel may remain in forward fuel cell as unusable.
2.12 Postflight Check

If any of following conditions exist:
- Thunderstorms are in local area or forecasted.
- Winds in excess of 35 knots or a gust spread of 15 knots exists or is forecasted.
- Helicopter is parked within 150 feet of hovering or taxiing aircraft that are in excess of basic GW of helicopter.
- Helicopter to be left unattended.

Perform following:

1) Install main rotor blade tie-downs.
2) Secure tail rotor loosely to tailboom with tie-down strap to prevent excessive flapping.
3) Install exhaust cover, engine inlet protective plugs and pitot cover.

NOTE

Refer to MD-E407-789-1 for additional tie-down data.
Figure 2-1 – Preflight Check Sequence
Section 3

Emergency/Malfunction Procedures

Table of Contents

- 3.1 Introduction .. 3
- 3.2 Definitions ... 3
- 3.3 Engine ... 4
 - 3.3.A Engine Failure .. 4
 - 3.3.A.1 Engine Failure – Hovering 4
 - 3.3.A.2 Engine Failure – In Flight 5
- 3.3.B Engine Restart In Flight ... 6
- 3.3.C Engine Underspeed ... 8
- 3.3.D Engine Overspeed .. 8
- 3.3.E Engine Compressor Stall 9
- 3.3.F Engine Hot Start/Shutdown 10
- 3.3.G Engine Oil Pressure Low, High or Fluctuating 10
- 3.3.H Engine Oil Temperature High 11
- 3.3.I Driveshaft Failure .. 11
- 3.3.J FADEC Failures .. 13
 - 3.3.K.1 FADEC CH FAIL (Single Ch FADEC Failure) 13
 - 3.3.K.2 FADEC FAIL (Dual Ch FADEC Failure) 13
 - 3.3.K.3 FADEC DEGRADED (In Flight) 14
 - 3.3.K.4 FADEC MAINT (In Flight) 15
- 3.3.L Emergency Shutdown ... 15
- 3.4 Fire ... 15
 - 3.4.A Engine Fire On Ground 15
 - 3.4.B Engine Fire During Flight 16
 - 3.4.C Cabin Smoke or Fumes 17
 - 3.4.D Electrical Fire .. 17
- 3.5 Tail Rotor ... 19
 - 3.5.A Complete Loss of Tail Rotor Thrust 19
 - 3.5.A.1 Hovering .. 19
 - 3.5.A.2 In Flight .. 20
 - 3.5.B Fixed Pitch Failures 20

Revision: 2

TCCA Approved Date: 23 JAN 2018

© COPYRIGHT © 2014 BY EAGLE COPTERS LTD.

This document is private and confidential and is supplied on the express condition that it is not to be used for any purpose or copied or communicated to any other person without written permission from Eagle Copters Ltd.
3.5.B.1 Hovering ... 21
3.5.B.2 In Flight – Left Pedal Applied 21
3.5.B.3 In Flight – Right Pedal Applied 22
3.6 Hydraulic System .. 22
3.6.A Loss of Hydraulic Pressure ... 22
3.6.B Flight Control Actuator Malfunction 22
3.7 Electrical System .. 23
3.7.A Generator Failure ... 23
3.7.B Excessive Electrical Load ... 24
3.8 Fuel System ... 25
3.8.A Dual Fuel Transfer Failure ... 25
3.9 Cyclic Cam Jam ... 26
3.10 Warning, Caution and Advisory Lights/Messages 26

List of Tables

Table 3-1: Warning (Red) Lights ... 27
Table 3-2: Caution (Amber) and Advisory (White/Green) Lights 30
Section 3

Emergency/Malfunction Procedures

3.1 Introduction

Following procedures contain indications of failures or malfunctions which affect safety of crew, helicopter, ground personnel or property; use of emergency features of primary and backup systems; and appropriate warnings, cautions, and explanatory notes. Tables 3-1 and 3-2 list fault conditions and corrective actions for warning lights and caution/advisory lights respectively.

NOTE

All corrective action procedures listed herein assume pilot gives first priority to helicopter control and a safe flight path. A tripped circuit breaker should not be reset in flight unless deemed necessary for safe completion of the flight. If a tripped circuit breaker is deemed necessary for safe completion of the flight, it should only be reset one time.

Helicopter should not be operated following any precautionary landing until cause of malfunction has been determined and corrective maintenance action taken.

3.2 Definitions

Following terms indicate degree of urgency in landing helicopter.

LAND AS SOON AS POSSIBLE
Land without delay at nearest suitable area (i.e., open field) at which a safe approach and landing is reasonably assured.
LAND AS SOON AS PRACTICAL

Landing site and duration of flight are at discretion of pilot. Extended flight beyond nearest approved landing area is not recommended.

Following terms are used to describe operating condition of a system, subsystem, assembly, or component.

<table>
<thead>
<tr>
<th>Affected</th>
<th>Fails to operate in intended or usual manner.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Operates in intended or usual manner.</td>
</tr>
</tbody>
</table>

3.3 Engine

3.3.A Engine Failure

3.3.A.1 Engine Failure – Hovering

Indications:
1. Left Yaw
2. ENGINE OUT and RPM warning lights illuminated
3. Engine instruments indicate power loss.
4. Engine out audio activated when NG drops below 55%.
5. NR decreasing with RPM warning light and audio on when NR drops below 95%.

Procedure:
1. Maintain heading and attitude control.
2. Collective – Adjust to control NR and rate of descent.
 Increase prior to ground contact to cushion landing.
3.3.A.2 Engine Failure – In Flight

Indications:
1. Left yaw.
2. ENGINE OUT and RPM warning lights illuminated.
3. Engine instruments indicate power loss.
4. Engine out audio activated when NG drops below 55%.
5. NR decreasing with RPM warning light and audio on when NR drops below 95%.

Procedure:
1. Maintain heading and attitude control.
2. Collective – Adjust as required to maintain 85 to 107% NR.

NOTE
Maintaining NR at high end of operating range will provide maximum rotor energy to accomplish landing, but will cause an increased rate of descent.

3. Cyclic – Adjust to obtain desired autorotative AIRSPEED.

• COPYRIGHT © 2014 BY EAGLE COPTERS LTD •
This document is private and confidential and is supplied on the express condition that it is not to be used for any purpose or copied or communicated to any other person without written permission from Eagle Copters Ltd.

Revision: 2
TCCA Approved Date: 23 JAN 2018
APR 13 2018
NOTE

Maximum AIRSPEED for steady state autorotation is 100 KIAS. Minimum rate of descent airspeed is 55 KIAS. Maximum glide distance airspeed is 80 KIAS.

4. Attempt engine restart if ample altitude remains. (Refer to ENGINE RESTART, paragraph 3.3.B).

If engine restart is not attempted or not successful:
5. EMER. FUEL VALVE switch – OFF.

6. At low altitude:
 a. Throttle – closed.
 b. Flare to lose airspeed

7. Apply collective as flare effect decreases to further reduce forward speed and cushion landing. Upon ground contact, collective shall be reduced smoothly while maintaining cyclic in neutral or centered position.

8. Complete helicopter shutdown.

3.3.B Engine Restart In Flight
An engine restart may be attempted in flight if time and altitude permit.

[CAUTION]

TO INITIATE AN IN-FLIGHT RESTART, Ng MUST BE LESS THAN 10 PERCENT AND THROTTLE MUST BE CYCLED THROUGH THE OFF POSITION.
CAUTION

ABORT START IMMEDIATELY IF ANY OF THE FOLLOWING EVENTS OCCURS:
1) Ng STOPS INCREASING PRIOR TO IDLE RPM.
2) ANY UNUSUAL NOISE OR VIBRATION OCCURS.
3) THE FADEC FAIL WARNING LIGHT ILLUMINATES.
4) THE ROTORCRAFT DC ELECTRICAL POWER FAILS OR DROPS BELOW 18 VDC.

CAUTION

IF CAUSE OF FAILURE IS OBVIOUSLY MECHANICAL, AS EVIDENCED BY ABNORMAL METALLIC OR GRINDING SOUNDS, DO NOT ATTEMPT A RESTART.

Procedure:
1. Anti-ice switch – OFF
2. Generator switch – OFF
3. Ng – Less than 10 percent
4. EMERG. FUEL VALVE – ON
5. Throttle – IDLE (Cycle through OFF first.)
6. Starter switch – Hold for > 0.5 second
7. START advisory light – ILLUMINATED
8. Throttle – Advance smoothly to FLY detent position

If restart is unsuccessful, abort start and secure engine as follows:
9. Throttle – OFF
10. EMERG. FUEL VALVE switch – OFF.
11. Accomplish autorotative descent and landing.
3.3.C Engine Underspeed

No Caution/Warning/Advisory lights illuminated

Indications:
1. Decrease in NG
2. Subsequent decrease in NP
3. Possible decrease in NR
4. Decrease in TRQ

Procedure:
1. Collective – Adjust as required to maintain 85 to 107% NR
2. Throttle – Confirm in FLY detent position
3. NR – Maintain 95 to 100% with collective
4. Land as soon as practical

3.3.D Engine Overspeed

Indications:
1. ENGINE OVSPD warning annunciator is on.
2. Increase in NR.
3. Increase in NP.
4. Increase in NG.
5. Increase in TRQ.

Procedure:
1. Adjust throttle and collective as necessary
3. Land as soon as possible.

CAUTION

IF UNABLE TO MAINTAIN NR, NP, NG OR MGT, PREPARE FOR A POWER OFF LANDING BY
LOWERING COLLECTIVE AND SHUTTING DOWN ENGINE.

3.3.E Engine Compressor Stall

Indications:
1. Engine pops
2. High or erratic MGT
3. Decreasing or erratic NG or NP
4. TRQ oscillations

Procedure:
1. Collective – Reduce power, maintain slow cruise flight
2. MGT and NG – Check for normal indications
3. ENG ANTI ICE switch – ON
4. PART SEP switch (if installed) – ON
5. HEATER switch (if installed) – ON

NOTE
Severity of compressor stalls will dictate if engine should be shut down and treated as an engine failure. Violent stalls can cause damage to engine and drive system components, and must be handled as an emergency condition. Stalls of a less severe nature (one or two low intensity pops) may permit continued operation of engine at a reduced power level, avoiding condition that result in compressor stall.

If pilot elects to continue flight:
6. Collective – Increase slowly to achieve desired power level.
7. MGT and NG – Monitor for normal response.
8. Land as soon as practical.
If pilot elects to shut down engine:
9. Enter autorotation
10. Throttle – OFF
11. EMERG. FUEL VALVE switch – OFF
12. Collective – Adjust as required to maintain 85 to 107% NR
13. Cyclic – Adjust as required to maintain desired airspeed
14. Prepare for power-off landing

3.3.F Engine Hot Start/Shutdown

Indications:
1. Excessive MGT
2. Visible smoke or fire

Procedure:
1. Throttle – OFF
2. EMERG. FUEL VALVE switch – OFF
3. STARTER switch – Ensure starter is motoring engine until MGT stabilizes at normal temperature.
4. Shut helicopter down.

3.3.G Engine Oil Pressure Low, High or Fluctuating

Indications:
1. Engine oil pressure below minimum.
2. Engine oil pressure above maximum or fluctuating abnormally.
3. CHECK INSTR caution annunciator is on.
4. ENG OIL PRESS caution annunciator illuminated

Procedure:
1. Engine oil pressure below minimum:
 a. Monitor engine oil pressure and temperature.
 b. Land as soon as possible.
2. Engine oil pressure above maximum or fluctuating abnormally.
 a. Operate at the lowest practical power setting.
b. Monitor engine oil pressure and temperature.
c. Land as soon as practical.

3.3.H Engine Oil Temperature High

Indications:
1. Engine oil temperature increasing above normal.
2. Engine oil temperature above maximum.
3. CHECK INSTR caution annunciator is on.

Procedure:
1. Reduce to the lowest practical power setting.
2. If temperature remains above the maximum limit even after reducing power, land as soon as possible.
3. If the temperature normalizes, monitor gauge and land as soon as practical.

3.3.J Driveshaft Failure

WARNING
FAILURE OF MAIN DRIVESHAFT TO TRANSMISSION WILL RESULT IN COMPLETE LOSS OF POWER TO THE MAIN ROTOR. ALTHOUGH COCKPIT INDICATIONS FOR A DRIVESHAFT FAILURE ARE SIMILAR TO AN ENGINE OVERSPEED, IT IS IMPERATIVE THAT AUTOROTATIVE FLIGHT PROCEDURES BE ESTABLISHED IMMEDIATELY. FAILURE TO REACT IMMEDIATELY TO ROTOR RPM AUDIO, RPM LIGHT AND NP/NR TACHOMETER INDICATIONS CAN RESULT IN LOSS OF CONTROL.

Indications:
1. Left yaw
2. Rapid decrease in NR.
3. Rapid increase in NP.
4. LOW RPM audio tone.
5. Illumination of RPM light.
6. Possible increase in noise level due to overspeeding engine and driveshaft breakage.

NOTE

ECU contains logic to reduce engine fuel flow if either Ng or Np exceeds limit settings (overspeed).

Procedure:

1. Maintain heading and attitude control.
2. Collective – Adjust as required to maintain 85 to 107% NR.

NOTE

Minimum rate of descent airspeed is 55 KIAS. Maximum glide distance airspeed is 80 KIAS.

3. Cyclic – Adjust to obtain desired autorotative airspeed.

NOTE

To maintain tail rotor effectiveness do not shutdown engine.

4. Landing – Complete autorotative landing.

5. Complete helicopter shutdown.
3.3.K FADEC Failures

3.3.K.1 FADEC CH FAIL (Single Ch FADEC Failure)

Indications:
1. FADEC CH FAIL warning light is on.
2. FADEC DEGRADED warning light may illuminate.

Procedure:
1. Press and release FADEC RESET switch.

 NOTE

 During FADEC RESET, engine instruments may fluctuate.

2. If the FADEC CH FAIL caution clears, continue the flight.
3. If the FADEC CH FAIL reappears, stabilize the rotorcraft, avoid abrupt control inputs, and land as soon as practical.

3.3.K.2 FADEC FAIL (Dual Ch FADEC Failure)

Indications:
1. FADEC FAIL audio activated.
2. FADEC FAIL warning light illuminated.
3. FADEC CH FAIL warning light illuminated
4. Fuel flow fixed at its last commanded value.

Procedure:
1. Maintain collective position.
2. Press and release FADEC RESET switch.
NOTE

During FADEC RESET, engine instruments may fluctuate.

3. If FADEC FAIL warning light extinguishes, land as soon as possible.
4. If FADEC FAIL warning light remains illuminated, then depending on power setting, pilot may choose to perform a run-on landing or an auto-rotation.

WARNING

THE THROTTLE WILL BE INOPERATIVE. USE EMERG. FUEL VALVE SWITCH TO SHUT OFF FUEL.

3.3.K.3 FADEC DEGRADED (In Flight)

Indications:
1. FADEC DEGRADED warning light is on.
2. Engine response may be reduced.

Procedure:
1. Stabilize the rotorcraft and avoid abrupt control inputs to minimize possible Np/Nr variations.
2. Press and release FADEC RESET switch.

NOTE

During FADEC RESET, engine instruments may fluctuate.

3. If the FADEC DEGRADED caution clears, continue the flight.
4. If the FADEC DEGRADED reappears, stabilize the rotorcraft, avoid abrupt control inputs, and land as soon as practical.
3.3.K.4 FADEC MAINT (In Flight)

Indications:
1. FADEC MAINT warning light is on.

NOTE

A FADEC MAINT light in flight is an indication of a frangible fuse fault

Procedure:
1. Stabilize the rotorcraft and avoid abrupt control inputs to minimize possible Np/Nr variations.
2. Land as soon as practical.

3.3.L Emergency Shutdown

Procedure:
1. Throttle – OFF.
2. EMERG. FUEL VALVE switch – OFF.
3. Generator Switch – OFF.
4. Fuel BOOST/XFR – OFF.
5. Complete helicopter shutdown.

3.4 Fire

3.4.A Engine Fire On Ground

Indications:
1. Smoke.
2. Fumes.
3. Fire.
4. ENGINE FIRE warning annunciator illuminated.
Procedure:
1. Throttle – OFF
2. EMERG. FUEL VALVE – OFF
3. Fuel BOOST/XFR – OFF
4. GEN Switch – OFF
5. BATT Switch – OFF
6. Rotor brake – Engage
7. Exit helicopter.

3.4.B Engine Fire During Flight

Indications:
1. Smoke.
2. Fumes.
3. Fire.
4. ENGINE FIRE warning annunciator illuminated.

Procedure:
1. In-flight – Immediately enter autorotation.
2. Throttle – OFF
3. EMERG. FUEL VALVE – OFF
4. Fuel BOOST/XFR – OFF
5. Execute autorotative descent and landing.
6. BATT switch – OFF.

NOTE

Do not restart engine until corrective maintenance has been performed.
3.4.C Cabin Smoke or Fumes

Indications:
1. Smoke.
2. Fumes.

Procedure:
1. In-flight – Start descent.
2. AIR COND BLO switch (if installed) – OFF.
3. HEATER switch (if installed) – OFF.
4. All vents – Open.
5. Side windows – Open.

If time and altitude permits:
6. Source – Attempt to identify and secure.
7. If source is identified and smoke and/or fumes still persist – Land as soon as possible.
8. If source is identified and smoke and/or fumes are cleared – Land as soon as practical.

3.4.D Electrical Fire

Indications:
1. Smoke fumes or fire.
2. Possible indication of abnormal amps.

Procedure:
1. Vents/side windows – Open, as required; ventilate cabin.
2. Begin descent.

NOTE

Maintain safe flight condition and land as soon as possible.
If source of smoke or fire can be positively identified, remove electrical power from the affected equipment by switching it off via switch or circuit breaker.

If source of the smoke or fire cannot be positively identified:
3. GEN switch – OFF.
4. Land as soon as practical.

If smoke/fumes do not decrease:
5. Airspeed – 60 knots or less.
6. BATT switch – OFF.
7. FUEL BOOST/XFR LEFT circuit breaker switch – LEFT (on).

If smoke/fumes do not decrease:
8. Land as soon as possible.

WARNING

PRIOR TO BATTERY DEPLETION, ALTITUDE MUST BE REDUCED BELOW 8000 FEET Hp (JET A) OR 4000 FEET Hp (JET B). UNUSABLE FUEL MAY BE AS HIGH AS 151.0 POUNDS AFTER THE BATTERY IS DEPLETED DUE TO INABILITY TO TRANSFER FUEL FROM FORWARD CELLS.

NOTE

With battery and generator OFF, an 80% charged battery will operate left fuel boost pump and left fuel transfer pump for approximately 3.4 hours with installed 34 amp-hour battery.
3.5 Tail Rotor

There is no single emergency procedure for all types of antitorque malfunctions. One key to a pilot successfully handling a tail rotor emergency lies in the ability to quickly recognize the type of malfunction that has occurred.

3.5.A Complete Loss of Tail Rotor Thrust

This is a situation involving a break in drive system, (eg. severed driveshaft) wherein tail rotor stops turning and delivers no thrust.

Indications:
1. Uncontrollable yawing to right (left side slip).
2. Nose down tucking.
3. Possible roll of fuselage.

NOTE

Severity of initial reaction of helicopter will be affected by AIRSPEED, CG, power being used and Ho.

Procedure:

3.5.A.1 Hovering

Close throttle and perform a hovering autorotation landing. A slight rotation can be expected on touchdown.
3.5.A.2 In Flight

Reduce throttle to idle, immediately enter autorotation, and maintain a minimum AIRSPEED of 55 KIAS during descent.

NOTE

When a suitable landing site is not available, vertical fin may permit controlled flight at low power levels and sufficient AIRSPEED. During final stages of approach, a mild flare should be executed, making sure all power to rotor is off. Maintain helicopter in a slight flare and smoothly use collective to execute a soft, slightly nose-high landing. Landing on aft portion of skids will tend to correct side drift. This technique will, in most cases, result in a run-on type landing.

[CAUTION]

IN A RUN-ON TYPE LANDING AFTER TOUCHING DOWN, DO NOT USE CYCLIC TO REDUCE FORWARD SPEED.

3.5.B Fixed Pitch Failures

This is a situation involving inability to change tail rotor thrust (blade angle) with anti-torque pedals.

Indications:
1. Lack of directional response.
2. Locked pedals.
NOTE

If pedals cannot be moved with a moderate amount of force, do not attempt to apply a maximum effort, since a more serious malfunction could result. If helicopter is in a trimmed condition when malfunction occurs, TRQ and AIRSPEED should be noted and helicopter flown to a suitable landing area. Certain combinations of TRQ, NR, and AIRSPEED will correct a yaw attitude, and these combinations should be used to land helicopter.

Procedure:

NOTE

Pull pedal stop emergency release to ensure pedal stop is retracted.

3.5.B.1 Hovering

Do not close throttle unless a severe right yaw occurs. If pedals lock in any position at a hover, landing from a hover can be accomplished with greater safety under power controlled flight rather than by closing throttle and entering autorotation.

3.5.B.2 In Flight – Left Pedal Applied

In a high power condition, helicopter will yaw to left when power is reduced. Power and AIRSPEED should be adjusted to a value where a comfortable yaw angle can be maintained. If AIRSPEED is increased, vertical fin will become more effective and an increased left yaw attitude will develop. To accomplish landing, establish a power-on approach with sufficiently low AIRSPEED (zero if necessary) to attain a rate of descent with a comfortable sideslip angle. (A decrease in NP decreases tail rotor thrust.) As collective is increased just before touchdown, left yaw will be reduced.
3.5.B.3 In Flight – Right Pedal Applied

In cruise flight or reduced power situation, helicopter will yaw to right when power is increased. A low power, run-on type landing will be necessary by gradually reducing throttle to maintain heading while adding collective to cushion landing. If right yaw becomes excessive, close throttle completely.

3.6 Hydraulic System

3.6.A Loss of Hydraulic Pressure

Indications:
1. HYDRAULIC SYSTEM caution light illuminated.
2. Grind ing or howling noise from pump.
3. Increase in force required to move flight controls.
4. Feedback forces may be evident during flight control movement.

Procedure:
1. Reduce AIRSPEED to 70 to 100 KIAS.
2. HYD SYSTEM circuit breaker – Out. If hydraulic power is not restored, push breaker in.
3. HYD SYS switch – HYD SYS; OFF if hydraulic power is not restored.
4. For extended flight set comfortable AIRSPEED, up to 120 KIAS, to minimize control forces.
5. Land as soon as practical.
6. A run-on landing at effective translational lift and speed (approximately 15 knots) is recommended.

3.6.B Flight Control Actuator Malfunction

An actuator hardover can occur in any flight control axis, but a cyclic cam jam will only occur in the fore and aft axis. An actuator hardover is manifested by uncommanded movements of one or two flight controls. If two controls move, the pilot will find one of these controls will require a higher than normal
control force to oppose the movement. This force cannot be “trimmed” to zero without turning the HYD SYS switch OFF.

Once the hydraulic boost is OFF, the forces on the affected flight control will be similar to the “normal” hydraulic off forces.

Indications:
1. Uncommanded flight control movements.
2. High flight control forces to oppose movement in one axis.
3. Feedback forces only in affected flight control axis.
4. Flight control forces normal in unaffected axis.

Procedure:
1. Attitude – Maintain.
2. HYD SYS switch – OFF.
3. AIRSPEED – Set to 70 to 100 KIAS.
4. Land as soon as possible using procedure from Paragraph 3.6.A.

3.7 Electrical System

3.7.A Generator Failure

Indications:
1. GEN FAIL caution light illuminated.
2. AMPS indicates 0.

Procedure:
1. GENERATOR FIELD and GENERATOR RESET circuit breakers — Check in.
2. GEN switch — RESET; then GEN.
3. If power is not restored, place GEN switch to OFF; land as soon as practical.
3.7.B Excessive Electrical Load

Indications:
1. AMPS indicates excessive load.
2. CHECK INSTR caution annunciator is on.
3. Smoke or fumes.

Procedure:
1. GEN switch – OFF.
2. BATT switch – OFF.
3. FUEL BOOST/XFR LEFT circuit breaker switch – LEFT (on)

WARNING

PRIOR TO BATTERY DEPLETION, ALTITUDE MUST BE REDUCED BELOW 8000 FEET HP (JET A) OR 4000 FEET HP (JET B). UNUSABLE FUEL MAY BE AS HIGH AS 151.0 POUNDS AFTER THE BATTERY IS DEPLETED DUE TO INABILITY TO TRANSFER FUEL FROM FORWARD CELLS.

NOTE

With battery and generator OFF, an 80% charged battery will operate left fuel boost pump and left fuel transfer pump for approximately 3.4 hours installed 34 ampere/hour battery.
4. Airspeed – 60 KIAS

NOTE

Pedal stop disengages with loss of electrical power.

5. Land as soon as practical.

NOTE

When throttle is repositioned to the idle stop (during engine shutdown) the PMA will go offline and the engine may flame out.

3.8 Fuel System

3.8.A Dual Fuel Transfer Failure

Indications:
1. L/FUEL XFR and R/FUEL XFR caution lights illuminate.
2. Last 151.0 pounds of fuel in forward cell may not be usable.
3. Fuel will stop transferring from forward to aft cell at approximately 344.1 pounds total indicated fuel.

Procedure:
1. LEFT and RIGHT FUEL BOOST/XFR circuit breaker switches – Check ON.
2. Determine FUEL QTY in forward cell.
3. Subtract quantity of fuel trapped in forward cell from total to determine usable fuel remaining.
4. Plan landing accordingly.
3.9 Cyclic Cam Jam

A cyclic cam jam can only occur in the fore and aft axis, whereas, an actuator hardover can occur in any flight control axis. A cyclic cam jam is manifested when a commanded control movement requires a higher than normal fore and aft spring force. The force felt when moving the cyclic fore and aft with a cam jam is the result of overriding a spring capsule.

Indications:
1. High (approximately 15 pounds) fore and aft cyclic control forces.
2. Normal pedal, collective and lateral cyclic control forces.

Procedure:
1. Helicopter pitch attitude – Maintain normal pitch attitudes with forward or aft cyclic force.

[CAUTION]

DO NOT TURN HYDRAULIC BOOST OFF.

3. Land as soon as practical.

3.10 Warning, Caution and Advisory Lights/Messages

Red warning lights/messages, fault conditions and corrective actions are presented in Table 3-1.

Amber caution and white advisory lights/messages, and corrective actions are presented in Table 3-2.
Table 3-1: Warning (Red) Lights

<table>
<thead>
<tr>
<th>Panel Wording</th>
<th>Fault Condition</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINE OUT</td>
<td>NG less than 55 ± 1 % and/or FADEC senses ENGINE OUT</td>
<td>Verify engine condition. Accomplish engine failure procedure.</td>
</tr>
<tr>
<td>ENGINE OVSPD</td>
<td>NG exceeds limit NP exceeds 105.4% and exceeds rate of change</td>
<td>1. Accomplish ENGINE OVERSPEED procedure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Maintenance action required before next flight</td>
</tr>
<tr>
<td>ENGINE FIRE</td>
<td>Fire detected inside the engine compartment</td>
<td>1. Throttle to OFF</td>
</tr>
<tr>
<td>(In-flight)</td>
<td></td>
<td>2. EMERG. FUEL VALVE to OFF.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Accomplish ENGINE FIRE procedure (3.4.B)</td>
</tr>
<tr>
<td>ENGINE FIRE</td>
<td>Fire detected inside the engine compartment</td>
<td>1. Throttle to OFF</td>
</tr>
<tr>
<td>(On ground)</td>
<td></td>
<td>2. EMERG. FUEL VALVE to OFF.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Accomplish ENGINE FIRE procedure (3.4.A)</td>
</tr>
<tr>
<td>ENG OIL PRESS</td>
<td>Engine oil pressure is below minimum</td>
<td>1. Reduce power; verify Eng Oil Press < 42 psi and Ng > 80%</td>
</tr>
<tr>
<td>(In-flight)</td>
<td></td>
<td>2. Land as soon as possible.</td>
</tr>
</tbody>
</table>

This document is private and confidential and is supplied on the express condition that it is not to be used for any purpose or copied or communicated to any other person without written permission from Eagle Copters Ltd.

Revision: 2
TCCA Approved Date: 23 JAN 2018
Table 3-1: Warning (Red) Lights

<table>
<thead>
<tr>
<th>Panel Wording</th>
<th>Fault Condition</th>
<th>Corrective Action</th>
</tr>
</thead>
</table>
| **FADEC FAIL**
(During start) | Both FADEC channels failed | 1. EMERG. FUEL VALVE to OFF.
2. Accomplish EMERGENCY SHUTDOWN procedure (3.3.L)
3. Applicable maintenance action required prior to next flight. |
| **FADEC FAIL**
(In-flight) | FADEC has detected a dual channel hard fault. Fuel flow is fixed to the last commanded value. | 1. Accomplish FADEC FAILURE procedure (3.3.K.2)
2. Applicable maintenance action required prior to next flight. |
| **RPM** (with low RPM audio) | NR below 95% | Reduce collective and ensure throttle is in FLY detent position. Light will extinguish and audio will cease when NR increases above 95%. |
| **RPM** (without audio) | NR above 107% | Increase collective and/or reduce severity of maneuver. Light will extinguish when NR decreases below 107%. |
Table 3-1: Warning (Red) Lights

<table>
<thead>
<tr>
<th>Panel Wording</th>
<th>Fault Condition</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMSN OIL PRESS</td>
<td>Transmission oil pressure is below minimum.</td>
<td>Reduce power; verify fault with gauge. Land as soon as possible.</td>
</tr>
<tr>
<td>XMSN OIL TEMP</td>
<td>Transmission oil temperature is at or above red line.</td>
<td>Reduce power; verify fault with gauge. Land as soon as practical.</td>
</tr>
</tbody>
</table>
Table 3-2: Caution (Amber) and Advisory (White/Green) Lights

<table>
<thead>
<tr>
<th>Panel Wording</th>
<th>Fault Condition</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/F FUEL FILTER</td>
<td>Airframe fuel filter is in impending bypass.</td>
<td>Land as soon as practical.</td>
</tr>
<tr>
<td>BAGGAGE DOOR</td>
<td>Baggage compartment door not securely latched.</td>
<td>Close door securely before flight. If light illuminates during flight, land as soon as practical.</td>
</tr>
<tr>
<td>BATTERY RLY</td>
<td>Battery relay has malfunctioned to closed (ON) position with BATT switch OFF. Battery is still connected to DC BUSS.</td>
<td>Land as soon as soon possible.</td>
</tr>
</tbody>
</table>
Table 3-2: Caution (Amber) and Advisory (White/Green) Lights

<table>
<thead>
<tr>
<th>Panel Wording</th>
<th>Fault Condition</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECK INSTR</td>
<td>TRQ, MGT, Ng, Fuel QTY, Fuel Press & Ammeter, or ENG Oil Temp & Press, have detected an exceedance. Flashing digital display on TRQ indicates an overtorque has occurred. Flashing digital display on MGT indicates MGT exceedance. Flashing digital display on Ng indicates Ng exceedance</td>
<td>1. Identify the source of the exceedance. Confirm with indicators. 2. Perform as required: • If TRQ/MGT/Ng – press LCD TEST button to display magnitude of exceedance. Applicable maintenance action required prior to next flight • If Fuel QTY – Land as soon as practical • If Fuel Press – Land as soon as possible • If Ammeter – Accomplish Excessive Electrical Load procedure (3.7.B) • If ENG Oil Temp – Accomplish Engine Oil Temp. procedure (3.3.H) • If ENG Oil Press - Accomplish Engine Oil Pressure procedure (3.3.G)</td>
</tr>
</tbody>
</table>
Table 3-2: Caution (Amber) and Advisory (White/Green) Lights

<table>
<thead>
<tr>
<th>Panel Wording</th>
<th>Fault Condition</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYCLIC CENTERING</td>
<td>Cyclic stick is not centered.</td>
<td>Reposition cyclic stick to center position to extinguish CYCLIC CENTERING light.</td>
</tr>
<tr>
<td>ENGINE ANTI-ICE (white)</td>
<td>ANTI-ICE switch ON. Engine receiving anti-icing air.</td>
<td>If light remains illuminated with ENGINE ANTI-ICE switch OFF, avoid operations requiring maximum power.</td>
</tr>
<tr>
<td>ENGINE CHIP</td>
<td>Ferrous particles in engine oil.</td>
<td>Land as soon as possible.</td>
</tr>
<tr>
<td>ENGINE FUEL FILTER</td>
<td>Engine fuel filter is in impending bypass.</td>
<td>Land as soon as practical.</td>
</tr>
<tr>
<td>FADEC CH FAIL</td>
<td>One FADEC channel failed</td>
<td>1. Press and release FADEC RESET switch. 2. Applicable maintenance action required prior to next flight. See Single Channel FADEC Failure (3.3.K.1)</td>
</tr>
</tbody>
</table>
Table 3-2: Caution (Amber) and Advisory (White/Green) Lights

<table>
<thead>
<tr>
<th>Panel Wording</th>
<th>Fault Condition</th>
<th>Corrective Action</th>
</tr>
</thead>
</table>
| **FADEC DEGRADED** (In-flight) | FADEC transient operation is degraded which may result in NR (NP) droops and overshoots. | 1. Make smooth, non-aggressive control movement.
2. Accomplish FADEC DEGRADED procedure (3.3.K.3)
3. Applicable maintenance action required prior to next flight. |
| **FADEC DEGRADED** (With engine shutdown) | FADEC has recorded a fault during previous flight or a current fault has been detected. | Applicable maintenance action required prior to next flight. |
| **FADEC MAINT** (In-flight) | Frangible fuse fault. | 1. Accomplish FADEC MAINT procedure (3.3.K.4)
2. Applicable maintenance action required prior to next flight |
| **FADEC MAINT** (With engine shutdown) | Engine maintenance is required. | Applicable maintenance action required prior to next flight. |
Table 3-2: Caution (Amber) and Advisory (White/Green) Lights

<table>
<thead>
<tr>
<th>Panel Wording</th>
<th>Fault Condition</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOAT ARM</td>
<td>FLOAT ARM switch is ON. Float inflation solenoid is armed.</td>
<td>1. Normal operation for takeoff and landing over water. FLOAT ARM switch – OFF. If light remains illuminated, FLOATS circuit breaker – Out. 2. Land as soon as practical.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE With float inflation solenoid armed, flight should not exceed 60 KIAS and 500 feet AGL.</td>
</tr>
<tr>
<td>FLOAT TEST</td>
<td>Float system in test mode.</td>
<td>None.</td>
</tr>
<tr>
<td>(green)</td>
<td></td>
<td>NOTE Aft fuel tank quantity is the total fuel quantity less the forward fuel tank quantity</td>
</tr>
<tr>
<td>FUEL LOW</td>
<td>100 ± 10 pounds of fuel remain in aft tank.</td>
<td>Verify FUEL QTY. Land as soon as practical</td>
</tr>
<tr>
<td>Panel Wording</td>
<td>Fault Condition</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>R/FUEL BOOST</td>
<td>Right fuel boost pump has failed.</td>
<td>If practical, descend below 8000 feet HP if fuel is Jet A or 4000 feet HP if fuel is Jet B to prevent fuel starvation if other fuel boost pump fails or has low output pressure. Land as soon as practical.</td>
</tr>
</tbody>
</table>

WARNING

IF BOTH FUEL BOOST PUMPS FAIL, ALTITUDE MUST BE REDUCED TO BELOW 8000 FEET HP (JET A) OR 4000 FEET HP (JET B). LAND AS SOON AS POSSIBLE.
Table 3-2: Caution (Amber) and Advisory (White/Green) Lights

<table>
<thead>
<tr>
<th>Panel</th>
<th>Wording</th>
<th>Fault Condition</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/FUEL BOOST</td>
<td>Left fuel boost pump has</td>
<td>If practical, descend below 8000 feet HP if fuel is</td>
<td>LAND AS SOON AS POSSIBLE.</td>
</tr>
<tr>
<td></td>
<td>failed.</td>
<td>Jet A or 4000 feet HP if fuel is Jet B to prevent</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>fuel starvation if other fuel boost pump fails or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>has low output pressure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Land as soon as practical.</td>
<td></td>
</tr>
</tbody>
</table>

WARNING

IF BOTH FUEL BOOST PUMPS FAIL, ALTITUDE MUST BE REDUCED TO BELOW 8000 FEET HP (JET A) OR 4000 FEET HP (JET B). LAND AS SOON AS POSSIBLE.

<table>
<thead>
<tr>
<th>Panel</th>
<th>Wording</th>
<th>Fault Condition</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUEL VALVE</td>
<td>Fuel valve position differs</td>
<td>Check FUEL VALVE circuit breaker in. Land as soon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>from EMERG FUEL VALVE switch</td>
<td>as practical. If on ground cycle EMERG. FUEL VALVE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>indication or FUEL VALVE</td>
<td>switch out.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>circuit breaker out.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3-2: Caution (Amber) and Advisory (White/Green) Lights

<table>
<thead>
<tr>
<th>Panel Wording</th>
<th>Fault Condition</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/FUEL XFR</td>
<td>Left fuel transfer pump has failed.</td>
<td>Land as soon as practical.</td>
</tr>
<tr>
<td></td>
<td>NOTE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Under normal fuel transfer conditions, helicopters S/N 53000 through 53174 L/FUEL XFR and R/FUEL XFR lights will illuminate for 2.5 minutes and then extinguish. This indicates transfer is complete and transfer pumps have been automatically turned off. Helicopters S/N 53175 and subsequent inhibit illumination of the lights.</td>
<td>IF BOTH FUEL TRANSFER PUMPS FAIL, UNSABLE FUEL MAY BE AS HIGH AS 151.0 POUNDS DUE TO INABILITY TO TRANSFER FUEL FROM FORWARD CELL. LAND AS SOON AS PRACTICAL.</td>
</tr>
<tr>
<td>R/FUEL XFR</td>
<td>Right fuel transfer pump has failed.</td>
<td>Land as soon as practical.</td>
</tr>
<tr>
<td>GEN FAIL</td>
<td>Generator not connected to DC BUSS.</td>
<td>Verify fault with AMPS gauge. GEN switch – RESET, then ON. If GEN FAIL light remains illuminated, GEN switch – OFF. Land as soon as practical</td>
</tr>
</tbody>
</table>
Table 3-2: Caution (Amber) and Advisory (White/Green) Lights

<table>
<thead>
<tr>
<th>Panel Wording</th>
<th>Fault Condition</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEATER OVERTEMP</td>
<td>An overtemp condition has been detected by a temperature probe either under pilot seat, copilot seat, or in vertical tunnel.</td>
<td>HEATER switch – OFF immediately.</td>
</tr>
<tr>
<td>HYDRAULIC SYSTEM</td>
<td>Hydraulic pressure below limit.</td>
<td>Verify HYD SYS switch position. Accomplish hydraulic system failure procedure (3.6)</td>
</tr>
<tr>
<td>LITTER DOOR</td>
<td>Litter door not securely latched.</td>
<td>Close door securely before flight. If light illuminates during flight, land as soon as practical.</td>
</tr>
<tr>
<td>PEDAL STOP</td>
<td>Pedal Restrictor Control Unit has detected a failure of part of system.</td>
<td>VNE – 60 KIAS PEDAL STOP emergency release – pull. Land as soon as practical.</td>
</tr>
<tr>
<td>START (white)</td>
<td>Start relay is in START mode.</td>
<td>If Start switch has not been engaged and there is zero indication on AMPS gage; START relay has malfunctioned and helicopter is on battery power. START circuit breaker – OUT. Land as soon as practical.</td>
</tr>
<tr>
<td>Panel Wording</td>
<td>Fault Condition</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>START FAULT</td>
<td>Indicates a starter relay failure. Engine may not start.</td>
<td>Throttle to OFF.</td>
</tr>
<tr>
<td>T/R CHIP</td>
<td>Ferrous particles in tail rotor gearbox oil.</td>
<td>Land as soon as possible.</td>
</tr>
<tr>
<td>XMSN CHIP</td>
<td>Ferrous particles in transmission oil.</td>
<td>Land as soon as possible.</td>
</tr>
</tbody>
</table>
Section 4

Performance Data

Table of Contents

4.1 Introduction .. 3
4.2 Power Assurance Check ... 3
4.3 Density Altitude ... 5
4.4 Height Velocity Envelope .. 6
4.5 Hover Ceiling .. 7
4.6 Not Used ... 9
4.7 Climb and Descent ... 9
4.7.A Climb ... 9
4.7.B Autorotation ... 10
4.8 Airspeed Calibration .. 10
4.9 Not Used ... 10
4.10 Noise Levels .. 11
4.10.A FAR Part 36 Stage 2 Noise Level 11

List of Figures

Figure 4-1A – Power Assurance Check, Level Flight MGT Chart 13
Figure 4-1B – Power Assurance Check, Level Flight NG Chart 14
Figure 4-2 – Density Altitude .. 15
Figure 4-3 – Altitude Versus Gross Weight for Height Velocity Diagram 16
Figure 4-4 – Height Velocity Chart .. 17
Figure 4-5 .. Deleted
Figure 4-6 – IGE Hover Controllability Chart ... 18
Figure 4-7 – OGE Hover Controllability Chart .. 19
Figure 4-8 – Hover Ceiling IGE (Sheet 1 of 4) 20
Figure 4-8 – Hover Ceiling IGE (Sheet 2 of 4) 21
Figure 4-8 – Hover Ceiling IGE (Sheet 3 of 4) 22
Figure 4-8 – Hover Ceiling IGE (Sheet 4 of 4) 23
Figure 4-9 – Hover Ceiling OGE (Sheet 1 of 4) 24
Figure 4-9 – Hover Ceiling OGE (Sheet 2 of 4) 25
Figure 4-9 – Hover Ceiling OGE (Sheet 3 of 4) ... 26
Figure 4-9 – Hover Ceiling OGE (Sheet 4 of 4) ... 27
Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 1 of 12) 28
Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 2 of 12) 29
Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 3 of 12) 30
Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 4 of 12) 31
Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 5 of 12) 32
Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 6 of 12) 33
Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 7 of 12) 34
Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 8 of 12) 35
Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 9 of 12) 36
Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 10 of 12) 37
Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 11 of 12) 38
Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 12 of 12) 39
Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 1 of 12) 40
Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 2 of 12) 41
Figure 4-12 – Rate of Climb – Max Continuous Power (Sheet 3 of 12) 42
Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 4 of 12) 43
Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 5 of 12) 44
Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 6 of 12) 45
Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 7 of 12) 46
Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 8 of 12) 47
Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 9 of 12) 48
Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 10 of 12) 49
Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 11 of 12) 50
Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 12 of 12) 51
Figure 4-12 – Autorotation Glide Distance ... 52
Figure 4-13 – Airspeed Installation Correction .. 53
Section 4

Performance Data

4.1 Introduction

Performance data presented herein are derived from engine manufacturer's specification power for engine less installation losses. These data are applicable to basic helicopter without any optional equipment that would appreciably affect lift, drag, or power available.

4.2 Power Assurance Check

Power Assurance Check Charts (Figure 4-1A and Figure 4-1B) are provided for the Honeywell HTS900-2-1D engine. These charts indicate the maximum allowable MGT and NG for an engine meeting minimum Honeywell specification. Engine must develop required torque without exceeding chart MGT/NG in order to meet performance data contained in this manual. Figure 4-1A is used for checking MGT while in level flight and Figure 4-1B is used for checking NG while in level flight. The charts are applicable with or without the IBF installed per TCCA STC SH16-9/FAA STC SR03706NY.

To perform power assurance check, turn off all sources of bleed air, including ENGINE ANTI-ICING. Establish level flight at an airspeed of 85 to 105 KIAS or VNE, whichever is lower.

NOTE

Be sure to dwell at the applicable power conditions in stabilized level flight before taking data.
NOTE

Record pressure altitude to the nearest 100 ft increment.

NOTE

Record OAT and Torque to the most significant digit of the gauges.

NOTE

If PAC value is low, be sure to verify accuracy of aircraft OAT indication by comparing with airfield data. MGT PAC margin is most sensitive to OAT and Torque indication errors.

NOTE

Operators are permitted to use the Excel spreadsheet supplied with the aircraft to ease the calculation of PAC margins. If PAC margins are close to the limits the manual reading of the chart will take precedence.

EXAMPLE: (See Figure 4-1A and 4-1B)

Record following information from cockpit instruments:

A. TRQ – 69%
B. HP – 3,700 ft
C. OAT – 24°C
D. MGT – Actual reading
E. NG – Actual reading

SOLUTION:

Enter Power Assurance Check chart (Figure 4-1A, Power Assurance Check, Level Flight, MGT Chart) at observed Torque (TRQ – 69%), proceed vertically down to intersect HP (3,700 feet), follow horizontally to intersect...
indicated OAT (24°C), then drop vertically to read maximum allowable MGT.

If actual MGT is less than or equal to chart MGT, engine performance equals or exceeds minimum specification and performance data contained in this manual can be achieved.

If actual MGT is greater than chart MGT, engine performance is less than minimum specification and performance data contained in this manual may not be achievable. Refer to ICA-E407-789 to determine cause of low power (high MGT).

Enter the Power Assurance Check chart (Figure 4-1B Power Assurance Check, Level Flight NG Chart) at observed Torque (TRQ – 69%), proceed vertically down to intersect HP (3,700 ft), follow horizontally to intersect indicated OAT (24°C), then drop vertically to read maximum NG.

If actual NG is less than or equal to chart NG, engine performance equals or exceeds minimum specification and performance data contained in this manual can be achieved.

If actual NG is greater than chart NG, engine performance is less than minimum specification and performance data contained in this manual may not be achievable. Refer to ICA-E407-789 to determine cause of low power (high NG).

4.3 Density Altitude

A Density Altitude chart (Figure 4-2) is provided to aid in calculation of performance and limitations. HD is an expression of density of air in terms of height above sea level; hence, the less dense the air, the higher the HD. For standard conditions of temperature and pressure, HD is same as HP. As temperature increases above standard for an altitude, HD will also increase to values higher than HP. Figure 4-2 expresses HD as a function of HP and temperature.
Density altitude chart also includes inverse of square root of density ratio:

\[\frac{1}{\sqrt{\sigma}} \]

which is used to calculate true airspeed (KTAS) by relation:

\[KTAS = KCAS \times \frac{1}{\sqrt{\sigma}} \]

EXAMPLE:

If ambient temperature is -15°C and pressure altitude is 7000 feet, find density altitude, and true airspeed for 100 KCAS.

SOLUTION:

Enter bottom of chart at -15°C.

Move vertically upward to 7000 foot pressure altitude line.

From intersection point, move horizontally left and read density altitude value of 5000 feet.

Move horizontally right and read: \[\frac{1}{\sqrt{\sigma}} \]

True airspeed: \[100 \times 1.08 = 108 \text{ KTAS} \]

4.4 Height Velocity Envelope

The height-velocity envelope diagrams (Figure 4-3 and Figure 4-4) define conditions from which a safe landing can be made on a smooth, level, firm surface following an engine failure. The Height-Velocity Diagram (Figure 4-3) is valid only when helicopter gross weight does not exceed limits of the Altitude Versus Gross Weight for Height-Velocity Diagram (Figure 4-3). Four envelopes (gross weight regions) are specified. Each gross weight region applies for all gross weights within its boundaries. No interpolation is allowed.

This document is private and confidential and is supplied on the express condition that it is not to be used for any purpose or copied or communicated to any other person without written permission from Eagle Copters Ltd.

Revision: 1

TCCA Approved

Date: 23 AUG 2016
For a given ambient outside air temperature, pressure altitude, and gross weight, the appropriate limiting envelope (Region A, B, C, or D) can be determined. Using Altitude Versus Gross Weight for Height-Velocity Diagram (Figure 4-3), move upward vertically from entry OAT to pressure altitude. From that point, move right horizontally to determine the correct weight region. (Examples: 15°C at sea level at 5000 pounds GW = Region B, and 30°C at 2000 feet pressure altitude at 5000 pounds GW = Region D). Once the correct weight region has been determined (A, B, C, or D), the corresponding avoid area is selected from the Height-Velocity Diagram (Figure 4-4).

4.5 Hover Ceiling

NOTE

Hover performance charts are based on 100% rotor RPM.

Hover Ceiling IGE charts (Figure 4-8) and Hover Ceiling OGE charts (Figure 4-9) present hover performance as allowable gross weight for conditions of HP and OAT. These hovering weights are obtainable in zero wind conditions and assume that the heater is not on above 20°C and anti-ice is not on above 5°C.

Satisfactory stability and control have been demonstrated in each area of the hover ceiling charts with winds as depicted on the IGE Hover Ceiling Controllability Chart (Figure 4-6) or OGE Hover Ceiling Controllability Chart (Figure 4-7) as applicable.

Area A (un-highlighted) of the controllability charts presents hover performance (relative to GW) for conditions where adequate control for all relative wind conditions up to 35 knots for lateral CG not exceeding ±2.5 inches (±63 mm); and up to 17 knots, for lateral CG not exceeding ±4.0 inches (±102 mm); for hover, takeoff and landing. Area B (shaded grey) of the controllability charts present hover performance (relative to CG) for
conditions where adequate control margins exist for relative winds within ±45° of the nose of the helicopter up to 35 knots for lateral CG not exceeding ±2.5 inches (±63 mm); and up to 17 knots for lateral CG not exceeding ±4.0 inches (±102 mm); for hover, takeoff, and landing. Area C (un-highlighted) of the controllability charts present hover performance (relative to C of G) for conditions where adequate control margins exist for winds directly off the helicopter nose for hovering, takeoffs and landings.

NOTE

If lateral CG exceeds ±2.5 inches (±63 mm) and density altitude is above 14,000 feet, all winds should be directly off the nose of the helicopter; for hover, takeoff and landing.

The following example uses a hover ceiling chart at takeoff power. The example is typical for use with all other hover ceiling charts.

EXAMPLE:

What guaranteed OGE GW hover capability could be expected for the following conditions:

A. HEATER and ANTI ICE — OFF
B. HP — 10,000 feet
C. OAT — +20°C
D. TAKEOFF POWER
SOLUTION:

1) Use Hover Ceiling OGE (Takeoff Power) chart (Figure 4-9, Sheet 1).
 A. Enter OAT scale at +20°C.
 B. Move upward to 10,000 feet HP curve.
 C. Move horizontally to read maximum gross weight of 5150 Lbs
2) Use the Density Altitude chart (Figure 4-2)
 A. Enter OAT scale at 20°C
 B. Move vertically upward to 10,000 ft HP curve
 C. Move horizontally left to read 12,750 ft HD
3) Use OGE Controllability chart (Figure 4-7)
 A. Enter DA scale at 12,750 ft HD
 B. Move horizontally right to the boundary lines
 C. Move vertically down to read controllability limits for areas A, B and C

Resulting GWs are:
 Area A: up to 4550 lbs
 Area B: 4550 to 4825 lbs
 Area C: 4825 to 5150 lbs

4.6 Not Used

4.7 Climb and Descent

4.7.A Climb

Rate of Climb charts (Figure 4-10 and Figure 4-11) are presented for various combinations of power settings and ENG ANTI ICE switch positions.

Recommended best rate of climb airspeed is 60 KIAS.

Reduce rate of climb data 100 feet per minute when operating with any combination of door(s) removed.
The following example uses a rate of climb chart at takeoff power. The example is typical for use with all other rate of climb charts.

EXAMPLE:
Find the maximum rate of climb that can be attained using takeoff power under the following conditions:
A. Heater — OFF
B. Engine Anti-icing — OFF
C. OAT — 10°C
D. HP — 14,000 feet
E. GW — 3500 pounds

SOLUTION:

Enter appropriate Rate of Climb Gross Weight chart (Figure 4-10, Sheet 3). At HP scale of 14,000 feet, proceed horizontally to temperature of 10°C. Drop down vertically and read a rate of climb of 1700 feet per minute.

4.7.B Autorotation
Refer to Figure 4-12 for autorotational glide distance as a function of altitude.

4.8 Airspeed Calibration
Refer to Figure 4-13 for airspeed installation correction during level flight and climb.

4.9 Not Used
4.10 Noise Levels

4.10.A FAR Part 36 Stage 2 Noise Level

This aircraft is certified as a Stage 2 helicopter as prescribed in FAR Part 36, Subpart H, for gross weights up to and including the certificated maximum takeoff and landing weight of 5250 pounds (2381 kg) per Bell kit 407-706-020. There are no operating limitations to meet any of the noise requirements.

The following noise level complies with FAR Part 36, Appendix J, Stage 2 noise level requirements. It was obtained by analysis of approved data from noise tests conducted under the provisions of FAR Part 36, Amendment 36-20.

The certified flyover noise level for the Model 407 is 85.5 dBA SEL (per Bell kit 407-706-020).

NOTE

No determination has been made by the certifying authorities that the noise levels of this helicopter are or should be acceptable or unacceptable for operations at, into, or out of any airport.

V_H is defined as the airspeed in level flight obtained using the minimum specification engine torque corresponding to maximum continuous power available for sea level, 25°C (77°F) ambient conditions at the relevant maximum certificated weight. The value of V_H thus defined for this helicopter is 127 KTAS.

This helicopter complies with the noise emission standards applicable to the aircraft as set out by the International Civil Aviation Organization (ICAO) in Annex 16, Volume 1, Chapter 11, for gross weights up to and including the certificated maximum takeoff and landing weight of 5250 pounds (2381 kg) per Bell kit 407-706-020.

There are no operating limitations to meet any of the noise requirements.

The following noise level complies with ICAO Annex 16, Volume 1, Chapter 11 noise level requirements. It was obtained by analysis of approved data from noise tests conducted under the provisions of ICAO Annex 16, Volume 1, Third Edition-1993.

The flyover noise level for the Model 407 is 85.5 dBA SEL (per Bell kit 407-706-020).

NOTE

ICAO Annex 16, Volume 1, Chapter 11 approval is applicable only after endorsement by the Civil Aviation Authority of the country of aircraft registration.
Figure 4-1A – Power Assurance Check, Level Flight MGT Chart

ENTER CHART AT OBSERVED TORQUE (%)
PROCEED VERTICALLY DOWN TO PRESSURE ALTITUDE
FOLLOW HORIZONTALLY TO THE RIGHT TO OBSERVED OAT
DROP DOWN TO READ MAXIMUM ALLOWABLE MGT

WITH OR WITHOUT INLET BARRIER FILTER
EAGLE 407HP POWER ASSURANCE MGT CHECK - HONEYWELL HTS 900-2-1D ENGINE
CRUISE (85-105 KIAS)

ENGINE TORQUE - PERCENT
40 45 50 55 60 65 70 75 80 85 90 95 100

MEASURED GAS TEMPERATURE - DEG C
500 525 550 575 600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975

TCCA Approved

Revision: 1
Date: 23 AUG 2016
Figure 4-1B – Power Assurance Check, Level Flight NG Chart
Figure 4-2 – Density Altitude

EXAMPLE: If OAT is -15°C and
Hp is 7000 ft, H_D is 5000 ft
and \(1 / \sqrt{\text{r}}\) is 1.08
Figure 4-3 – Altitude Versus Gross Weight for Height Velocity Diagram
HEIGHT-VELOCITY DIAGRAM
FOR GROSS WEIGHT REGIONS A TO D

NOTE: LOW HOVER POINT IS
AT 6 FT SKID HEIGHT

Figure 4-4 – Height Velocity Chart

Revision: 1
TCCA Approved Date: 23 AUG 2016
IGE HOVER CONTROLLABILITY CHART

NOTE

For TCCA/FAA approved hover ceiling **above 15,500' DA** see Figure 4-8A

IGE HOVER CEILING in BHT-407-FM-12, Rev. 2 or later

Area A – Winds up to 35 knots acceptable from any azimuth for hover/takeoffs/landings
Area B – Winds up to 35 knots acceptable within ±45° of helicopter nose for hover/takeoffs/landings
Area C – All winds must be directly off helicopter nose for hover/takeoffs/landings

Figure 4-6 – IGE Hover Controllability Chart

Revision: 1

TCCA Approved Date: 23 AUG 2016
OGE HOVER CONTROLLABILITY CHART

NOTE
For TCCA/FAA approved hover ceiling above 15,250' DA see Figure 4-9A
OGE HOVER CEILING in BHT-407-FM-12, Rev. 2 or later

Area A – Winds up to 35 knots acceptable from any azimuth for hover/takeoffs/landings
Area B – Winds up to 35 knots are acceptable within ±45° of helicopter nose for hover/takeoffs/landings
Area C – All winds must be directly off helicopter nose for hover/takeoffs/landings

Figure 4-7 – OGE Hover Controllability Chart

Revision: 1
TCCA Approved Date: 23 AUG 2016
HOVER CEILING
IN GROUND EFFECT

TAKEOFF POWER
ROTOR RPM 100%
GENERATOR 50 AMPS

SKID HEIGHT 4 FT (1.2 METERS)
HEATER OFF / ANTI-ICE OFF
BASIC INLET

NOTE
For TCCA/FAA approved hover ceiling above 15,500' DA see Figure 4-8A
IGE HOVER CEILING (Sheet 1 of 32) in BHT-407-FM-12 Rev. 2 or later

Figure 4-8 – Hover Ceiling IGE (Sheet 1 of 4)

• COPYRIGHT © 2014 BY EAGLE COPTERS LTD •
This document is private and confidential and is supplied on the express condition that it is not to be used for any purpose or copied or communicated to any other person without written permission from Eagle Copters Ltd.

Revision: 1
TCCA Approved
Date: 23 AUG 2016
Figure 4-8 – Hover Ceiling IGE (Sheet 2 of 4)
Figure 4-8 – Hover Ceiling IGE (Sheet 3 of 4)

NOTE
For TCCA/FAA approved hover ceiling above 15,500' DA see Figure 4-8A
IGE HOVER CEILING (Sheet 3 of 32) in BHT-407-FM-12 Rev. 2 or later

• COPYRIGHT © 2014 BY EAGLE COPTERS LTD •
This document is private and confidential and is supplied on the express condition that it is not to be used for any purpose or copied or communicated to any other person without written permission from Eagle Copters Ltd.

TCCA Approved Date: 23 AUG 2016
HOVER CEILING
IN GROUND EFFECT

TAKEOFF POWER
ROTOR RPM 100%
GENERATOR 50 AMPS

SKID HEIGHT 4 FT (1.2 METERS)
HEATER ON BELOW 20°C / ANTI-ICE ON BELOW 5°C
BASIC INLET

NOTE
For TCCA/FAA approved hover ceiling above 15,500' DA see Figure 4-8A
IGE HOVER CEILING (Sheet 4 of 32) in BHT-407-FM-12 Rev. 2 or later

Figure 4-8 – Hover Ceiling IGE (Sheet 4 of 4)
HOVER CEILING
OUT OF GROUND EFFECT

TAKEOFF POWER
ROTOR RPM 100%
GENERATOR 50 AMPS

SKID HEIGHT 40 FT (12.2 METERS)
HEATER OFF / ANTI-ICE OFF
BASIC INLET

NOTE
For TCCA/FAA approved hover ceiling above 15,250' DA see Figure 4-9A
OGE HOVER CEILING (Sheet 1 of 32) in BHT-407-FM-12 Rev. 2 or later

Figure 4-9 – Hover Ceiling OGE (Sheet 1 of 4)
HOVER CEILING
OUT OF GROUND EFFECT
TAKEOFF POWER
ROTOR RPM 100%
GENERATOR 50 AMPS
SKID HEIGHT 40 FT (12.2 METERS)
HEATER OFF / ANTI-ICE ON BELOW 5°C
BASIC INLET

NOTE
For TCCA/FAA approved hover ceiling above 15,250' DA see Figure 4-9A
OGE HOVER CEILING (Sheet 2 of 32) in BHT-407-FM-T2 Rev. 2 or later

Figure 4-9 – Hover Ceiling OGE (Sheet 2 of 4)
HOVER CEILING
OUT OF GROUND EFFECT

TAKEOFF POWER
ROTOR RPM 100%
GENERATOR 50 AMPS
SKID HEIGHT 40 FT (12.2 METERS)
HEATER ON BELOW 20°C / ANTI-ICE OFF
BASIC INLET

NOTE
For TCCA/FAA approved hover ceiling above 15,250' DA see Figure 4-9A
OGE HOVER CEILING (Sheet 3 of 32) in BHT-407-FM-12 Rev. 2 or later

Figure 4-9 – Hover Ceiling OGE (Sheet 3 of 4)
HOVER CEILING OUT OF GROUND EFFECT

TAKEOFF POWER
- **ROTOR RPM 100%**
- **GENERATOR 50 AMPS**

SKID HEIGHT 40 FT (12.2 METERS)
- **HEATER ON BELOW 20°C / ANTI-ICE ON BELOW 5°C**
- **BASIC INLET**

NOTE
For TCCA/FAA approved hover ceiling **above 15,250' DA** see Figure 4-9A
OGE HOVER CEILING (Sheet 4 of 32) in BHT-407-FM-12 Rev. 2 or later

Figure 4-9 – Hover Ceiling OGE (Sheet 4 of 4)

- **Maximum Demonstrated Density Altitude (15,230')**
- **OAT - °C**
- **GROSS WEIGHT - LBS**

Note: Dotted vertical green line at *°F* indicates Anti-ice being switched ON/OFF.

COPYRIGHT © 2014 BY EAGLE COPTERS LTD

This document is private and confidential and is supplied on the express condition that it is not to be used for any purpose or copied or communicated to any other person without written permission from Eagle Copters Ltd.

Revision: 1
TCCA Approved

Date: 23 AUG 2016
RATE OF CLIMB

TAKEOFF POWER
ENGINE RPM 100%
GENERATOR 180 AMPS

60 KIAS
HEATER OFF
BASIC INLET

REDUCE RATE OF CLIMB 225 FT/MIN ABOVE
15,000 FT H\(^2\) FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 3000 lb (1361 kg)

Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 1 of 12)
RATE OF CLimb

TAKEOFF POWER
ENGINE RPM 100%
GENERATOR 180 AMPS

60 KIAS
HEATER ON
BASIC INLET

REDUCE RATE OF CLIMB 225 FT/MIN ABOVE
11,000 FT H\(\text{\textit{p}}\) FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 3000 lb (1361 kg)

Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 2 of 12)
RATE OF CLIMB

TAKEOFF POWER 60 KIAS
ENGINE RPM 100% HEATER OFF
GENERATOR 180 AMPS BASIC INLET

REDUCE RATE OF CLIMB 190 FT/MIN ABOVE
11,500 FT HP FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 3500 lb (1857 kg)

Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 3 of 12)
RATE OF CLIMB

TAKEOFF POWER 60 KIAS
ENGINE RPM 100% HEATER ON
GENERATOR 180 AMPS BASIC INLET

REDUCE RATE OF CLIMB 190 FT/MIN ABOVE
7500 FT HP FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 3500 lb (1857 kg)

Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 4 of 12)
RATE OF CLIMB

TAKEOFF POWER 60 KIAS
ENGINE RPM 100% HEATER OFF
GENERATOR 180 AMPS BASIC INLET

REDUCE RATE OF CLIMB 170 FT/MIN ABOVE 9000 FT Hp FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 4000 lb (1814 kg)

Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 5 of 12)
RATE OF CLimb

TAKEOFF POWER 60 KIAS
ENGINE RPM 100% HEATER ON
GENERATOR 180 AMPS BASIC INLET

REDUCE RATE OF CLIMB 170 FT/MIN ABOVE 4500 FT HP FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 4000 lb (1814 kg)

Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 6 of 12)
RATE OF CLimb

TAKEOFF POWER
ENGINE RPM 100%
GENERATOR 180 AMPS

60 KIAS
HEATER OFF
BASIC INLET

REDUCE RATE OF CLIMB 150 FT/MIN ABOVE
6500 FT H³ FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 4500 lb (2041 kg)

Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 7 of 12)
RATE OF CLIMB

TAKEOFF POWER 60 KIAS
ENGINE RPM 100% HEATER ON
GENERATOR 180 AMPS BASIC INLET

REDUCE RATE OF CLIMB 150 FT/MIN ABOVE
2000 FT HP FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 4500 lb (2041 kg)

Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 8 of 12)
RATES OF CLIMB

TAKEOFF POWER
ENGINE RPM 100%
GENERATOR 180 AMPS

60 KIAS
HEATER OFF
BASIC INLET

REDUCE RATE OF CLIMB 135 FT/Min ABOVE
5000 FT HP FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 5000 lb (2268 kg)

Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 9 of 12)
RATE OF CLIMB

TAKEOFF POWER
ENGINE RPM 100%
GENERATOR 180 AMPS

60 KIAS
HEATER ON
BASIC INLET

REDUCE RATE OF CLIMB 135 FT/MIN ABOVE
1000 FT HP FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 5000 lb (2268 kg)

Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 10 of 12)
RATE OF CLimb

TAKEOFF POWER
ENGINE RPM 100%
GENERATOR 180 AMPS

REDUCE RATE OF CLIMB 130 FT/MIN ABOVE
4000 FT H₂O FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 5250 lb (2381 kg)

Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 11 of 12)
RATE OF CLimb

TAKEOFF POWER 60 KIAS
ENGINE RPM 100% HEATER ON
GENERATOR 180 AMPS BASIC INLET

REDUCE RATE OF CLIMB 130 FT/MIN ABOVE
1000 FT HP FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 5250 lb (2381 kg)

Figure 4-10 – Rate of Climb – Takeoff Power (Sheet 12 of 12)
RATE OF CLIMB

MAXIMUM CONTINUOUS POWER
ENGINE RPM 100%
GENERATOR 180 AMPS

REDUCE RATE OF CLIMB 225 FT/Min ABOVE
10,000 FT For ANTI-ICE ON (5°C AND COLDER)

Gross Weight 3000 lb (1361 kg)

Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 1 of 12)
RANGE OF CLIMB

MAXIMUM CONTINUOUS POWER
ENGINE RPM 100%
GENERATOR 180 AMPS

REDUCE RANGE OF CLIMB 225 FT/MIN ABOVE
6000 FT FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 3000 lb (1361 kg)

Figure 4-11 – Range of Climb – Max Continuous Power (Sheet 2 of 12)
RATE OF CLimb

MAXIMUM CONTINUOUS POWER 60 KIAS
ENGINE RPM 100% HEATER OFF
GENERATOR 180 AMPS BASIC INLET

REDUCE RATE OF CLimb 190 FT/MIN ABOVE
7500 FT HP FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 3500 lb (1587 kg)

Figure 4-12 – Rate of Climb – Max Continuous Power (Sheet 3 of 12)
RATE OF CLimb

MAXIMUM CONTINUOUS POWER
ENGINE RPM 100%
GENERATOR 180 AMPS

REDUCE RATE OF CLimb 190 FT/Min ABOVE
2500 FT HP FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 3500 lb (1587 kg)

Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 4 of 12)
RATE OF CLimb

MAXIMUM CONTINUOUS POWER
ENGINE RPM 100%
GENERATOR 180 AMPS

60 KIAS
HEATER OFF
BASIC INLET

REDUCE RATE OF CLIMB 170 FT/MIN ABOVE
5000 FT HP FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 4000 lb (1814 kg)

Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 5 of 12)
RATE OF CLIMB

MAXIMUM CONTINUOUS POWER 60 KIAS
ENGINE RPM 100% HEATER ON
GENERATOR 180 AMPS BASIC INLET

REDUCE RATE OF CLIMB 170 FT/Min
FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 4000 lb (1814 kg)

Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 6 of 12)
RATE OF CLIMB

MAXIMUM CONTINUOUS POWER
ENGINE RPM 100%
GENERATOR 180 AMPS

60 KIAS
HEATER OFF
BASIC INLET

REDUCE RATE OF CLIMB 150 FT/MIN ABOVE
3000 FT HP FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 4500 lb (2041 kg)

Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 7 of 12)
RATE OF CLIMB

MAXIMUM CONTINUOUS POWER
ENGINE RPM 100%
GENERATOR 180 AMPS

60 KIAS
HEATER ON
BASIC INLET

REDUCE RATE OF CLIMB 150 FT/MIN
FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 4500 lb (2041 kg)

Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 8 of 12)
RATE OF CLIMB

MAXIMUM CONTINUOUS POWER 60 KIAS
ENGINE RPM 100%
GENERATOR 180 AMPS

REDUCE RATE OF CLIMB 135 FT/MIN ABOVE 3000 FT HP FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 5000 lb (2268 kg)

Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 9 of 12)
RATE OF CLIMB

MAXIMUM CONTINUOUS POWER
ENGINE RPM 100%
GENERATOR 180 AMPS

REDUCE RATE OF CLIMB 135 FT/MIN
FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 5000 lb (2268 kg)

Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 10 of 12)
RATE OF CLIMB

MAXIMUM CONTINUOUS POWER
60 KIAS
ENGINE RPM 100%
HEATER OFF
GENERATOR 180 AMPS
BASIC INLET

REDUCE RATE OF CLIMB 130 FT/MIN ABOVE
2500 FT Hp FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 5250 lb (2381 kg)

Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 11 of 12)
RATE OF CLIMB

MAXIMUM CONTINUOUS POWER
ENGINE RPM 100%
GENERATOR 180 AMPS

REDUCE RATE OF CLIMB 130 FT/MIN
FOR ANTI-ICE ON (5°C AND COLDER)

Gross Weight 5250 lb (2381 kg)

Figure 4-11 – Rate of Climb – Max Continuous Power (Sheet 12 of 12)
AUTOROTATION GLIDE DISTANCE

Figure 4-12 – Autorotation Glide Distance

NOTE: AUTOROTATIONAL DESCENT PERFORMANCE IS A FUNCTION OF AIRSPEED AND IS ESSENTIALLY UNAFFECTED BY DENSITY ALTITUDE AND GROSS WEIGHT.
AIRSPEED INSTALLATION CORRECTION TABLE

KCAS = (KIAS – INSTRUMENT ERROR – POSITION ERROR)

NOTE: This chart assumes zero instrument error.

<table>
<thead>
<tr>
<th>KIAS</th>
<th>CLIMB KCAS</th>
<th>LEVEL FLIGHT KCAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>--</td>
<td>22</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>40</td>
<td>37</td>
<td>43</td>
</tr>
<tr>
<td>50</td>
<td>47</td>
<td>52</td>
</tr>
<tr>
<td>60</td>
<td>58</td>
<td>63</td>
</tr>
<tr>
<td>70</td>
<td>69</td>
<td>73</td>
</tr>
<tr>
<td>80</td>
<td>78</td>
<td>82</td>
</tr>
<tr>
<td>90</td>
<td>87</td>
<td>92</td>
</tr>
<tr>
<td>100</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>110</td>
<td>--</td>
<td>110</td>
</tr>
<tr>
<td>120</td>
<td>--</td>
<td>121</td>
</tr>
<tr>
<td>130</td>
<td>--</td>
<td>131</td>
</tr>
<tr>
<td>140</td>
<td>--</td>
<td>144</td>
</tr>
</tbody>
</table>

Figure 4-13 – Airspeed Installation Correction
Section 5

Weight and Balance Data

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>5-3</td>
</tr>
<tr>
<td>5.2</td>
<td>Empty Weight Center of Gravity</td>
<td>5-3</td>
</tr>
<tr>
<td>5.2.A</td>
<td>Empty Weight</td>
<td>5-3</td>
</tr>
<tr>
<td>5.2.B</td>
<td>Center of Gravity</td>
<td>5-3</td>
</tr>
<tr>
<td>5.3</td>
<td>Gross Weight Center of Gravity</td>
<td>5-4</td>
</tr>
<tr>
<td>5.3.A</td>
<td>Useful Loads</td>
<td>5-4</td>
</tr>
<tr>
<td>5.3.B</td>
<td>Center of Gravity</td>
<td>5-5</td>
</tr>
<tr>
<td>5.4</td>
<td>Doors Open or Removed</td>
<td>5-5</td>
</tr>
<tr>
<td>5.4.A</td>
<td>Door Weights and Moments</td>
<td>5-5</td>
</tr>
<tr>
<td>5.4.B</td>
<td>Ballast Adjustment</td>
<td>5-6</td>
</tr>
<tr>
<td>5.5</td>
<td>Cockpit and Cabin Loading</td>
<td>5-6</td>
</tr>
<tr>
<td>5.5.A</td>
<td>Longitudinal Loading</td>
<td>5-7</td>
</tr>
<tr>
<td>5.5.B</td>
<td>Most Forward and Most Aft CG</td>
<td>5-7</td>
</tr>
<tr>
<td>5.5.C</td>
<td>Alternate Loading</td>
<td>5-8</td>
</tr>
<tr>
<td>5.5.D</td>
<td>Cabin Floor Loading</td>
<td>5-8</td>
</tr>
<tr>
<td>5.6</td>
<td>Baggage Compartment Loading</td>
<td>5-8</td>
</tr>
<tr>
<td>5.7</td>
<td>Fuel Loading</td>
<td>5-9</td>
</tr>
<tr>
<td>5.8</td>
<td>Sample Loading Problem</td>
<td>5-9</td>
</tr>
</tbody>
</table>
List of Figures and Tables

Figure 5-1 – Fuselage Stations ... 5-10
Figure 5-2 – Buttock Lines Inches (Millimeters) ... 5-11
Figure 5-3 – Fuel Center of Gravity .. 5-12
Table 5-1 – Door Weights and Moments (US) .. 5-13
Table 5-2 – Cabin and Baggage Loading (U.S.) ... 5-14
Table 5-2M – Cabin and Baggage Loading (Metric) 5-15
Table 5-3 – Fuel Loading (U.S.) .. 5-16
Table 5-3M – Fuel Loading (Metric) .. 5-17
Table 5-4 – Fuel Density Versus Temperature .. 5-18
Table 5-5 – Sample Loading Problem (US) ... 5-19
Table 5-5M – Sample Loading Problem (Metric) .. 5-21
Table 5-6 – Weight and Balance Worksheet (US) .. 5-23
Table 5-6M – Weight and Balance Worksheet (Metric) 5-24
Section 5

Weight and Balance Data

5.1 Introduction
This section provides loading information and instructions necessary to ensure that flight can be performed within the approved gross weight and center of gravity limitations, as defined in Section 1.

5.2 Empty Weight Center of Gravity

5.2.A Empty Weight
The empty weight condition consists of the basic helicopter with required equipment, optional equipment kits, transmission and gearbox oils, hydraulic fluid, unusable fuel, undrainable engine oil and fixed ballast. The empty weight and center of gravity are recorded on the Actual Weight Record, a copy of which should be carried in the helicopter to enable weight and balance computations.

5.2.B Center of Gravity
An Empty Weight vs. Center of Gravity chart is provided in ICA-E407-789 Chapter 8 as a guide to simplify computing ballast requirements. This chart was derived from gross weight longitudinal center of gravity limits shown in Section 1, using most forward and most aft useful loads for standard seating and fuel.
5.3 **Gross Weight Center of Gravity**

Gross weight condition is empty weight condition plus useful load.

5.3.A **Useful Loads**

Useful load consists of usable fuel, engine oil, crew, passengers, baggage and cargo. Combinations of these items, which have most adverse effect on helicopter center of gravity, are known as most forward and most aft useful loads. Whenever cargo and/or baggage are carried, these useful loads may be different for each flight, and weight and balance must be computed to ensure gross weight and center of gravity will remain within limits throughout flight.

Standard most forward and most aft useful loads are combinations of fuel, crew and passenger loading only. These loads, in conjunction with empty weight center of gravity chart, allow passengers only (no baggage or other cargo) to be carried within appropriate weight limitations without computing center of gravity for each flight.

If helicopter has a non-standard fuel system or seating arrangement, or is not ballasted in accordance with the Empty Weight Versus Center of Gravity chart in ICA-E407-789, Chapter 8, pilot must determine weight and balance to ensure gross weight and center of gravity will remain within limits throughout each flight.
5.3.B Center of Gravity

It is the responsibility of the pilot to ensure that helicopter is properly loaded to maintain center of gravity throughout each flight within gross weight center of gravity limits shown in Section 1 or appropriate supplement. Gross weight longitudinal and lateral center of gravity can be calculated using Actual Weight Record, diagrams and loading tables in this section, and loading tables in applicable Flight Manual Supplements.

When carrying baggage, cargo, or non-standard loads, effects of fuel consumption and addition/deletion of passengers, baggage, or cargo at intermediate points should be checked prior to flight.

Significant fuselage stations and buttock lines are shown in Figure 5-1 and Figure 5-2 to aid in weight and balance computations.

5.4 Doors Open or Removed

When one or more cabin doors are removed, helicopter may exceed gross weight center of gravity limits during flight. If using the Empty Weight Versus Center of Gravity chart (refer to ICA-E407-789, Chapter 8), a ballast adjustment to offset moment change is necessary (Table 5-1). Otherwise, gross weight center of gravity should be computed for each flight.

5.4.A Door Weights and Moments

Following table provides weight and moment adjustments for cabin doors. Sign convention for buttock lines used to compute lateral moments are:

1. Left is negative.
2. Right is positive.
<table>
<thead>
<tr>
<th>ACTION</th>
<th>LEFT DOOR</th>
<th>MOMENT CHANGE</th>
<th>RIGHT DOOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove</td>
<td>Positive (+)</td>
<td></td>
<td>Negative (-)</td>
</tr>
<tr>
<td>Install</td>
<td>Negative (-)</td>
<td></td>
<td>Positive (+)</td>
</tr>
</tbody>
</table>

Example:
When removing a left door only, subtract positive weight value and negative moment value shown in table. Net effect on helicopter is a reduction in weight and a shift in lateral CG to right (positive direction).

5.4.B Ballast Adjustment

Following check can be made to determine if a ballast adjustment is necessary after doors are removed or installed.

1. For helicopters without ballast or with nose ballast, apply weight and moment changes to most aft useful load condition to determine if an increase in nose ballast is required, or a reduction is allowed.

2. For helicopters with tail ballast, apply weight and moment changes to most forward useful load condition to determine if a reduction in tail ballast is allowed, or an increase is required.

Note

Ballast changes are performed by maintenance personnel. After any ballast change, Actual Weight Record must be revised to show new empty weight condition.

5.5 Cockpit and Cabin Loading

Loading tables (Table 5-2 and Table 5-2M) provide weights and moments for each passenger location, litter patient, and baggage compartment in both U.S. and metric units.
To find moments for weights in excess of those shown on tables, multiply weight by fuselage station at which center of gravity of the object is located. An alternate method is to calculate amount of weight in excess of maximum weight listed on table, then read moment for this excess weight from table and add it to moment for maximum weight shown on table. This will give desired moment for the object.

5.5.A Longitudinal Loading

1. A minimum weight of 170 pounds (77.1 kg) is required in cockpit at fuselage station 65.0 when the empty weight center of gravity chart is used.

2. Passenger seating is unrestricted.

3. Cargo loading is restricted only by floor load limit. Refer to Section 1.

5.5.B Most Forward and Most Aft CG

When using empty weight center of gravity chart, following combinations of crew, fuel and passenger loading will have most extreme effects on longitudinal center of gravity, assuming standard weights for all crew and passengers.

1. Most forward CG will occur with forward and mid seats occupied and fuel quantity of 74.8 gallons (283.0 L).

2. Most aft CG will occur with one forward seat occupied (pilot) and fuel quantity of 28.4 gallons (107.5 L).

Since center of gravity of aft passengers is on aft limit, weight of passengers is not included in most aft useful load. However when most aft center of gravity of a configuration is forward of aft limit, addition of aft passengers will shift center of gravity further aft, and should be included in computation.
5.5.C Alternate Loading

Gross weight center of gravity chart must be used to determine cabin loading requirements under following conditions:

1. Whenever cargo and/or baggage are carried.
2. When actual passenger weights are used.
3. When seating arrangement and/or fuel system are non-standard.
4. When performing specialty missions, such as hoisting or rappelling.

5.5.D Cabin Floor Loading

Cabin floor is structurally designed for 75 pounds per square foot (3.7 kg per 100 cm²).

5.6 Baggage Compartment Loading

When weight is loaded into baggage compartment, the pilot is required to compute weight and balance, regardless of passenger loading.

Baggage compartment is structurally designed for 86 pounds per square foot (4.2 kg per 100 cm²) for a total weight of 250 pounds (113.4 kg).

Loading of baggage compartment should be from front to rear. Load shall be secured to tie-down fittings if shifting of load in flight could result in structural damage to baggage compartment or in gross weight center of gravity being exceeded.

If load is not secured, center of gravity must be computed with load in most adverse position.
5.7 Fuel Loading

Longitudinal center of gravity of fuel shifts as it is consumed (Figure 5-3). Extreme effects of fuel consumption on helicopter center of gravity for standard fuel system are as follows:

1. Critical fuel for computing most forward useful load is 74.8 gallons (283.0 L).
2. Critical fuel for computing most aft useful load is 28.4 gallons (107.5 L).

Fuel loading tables (Table 5-3 and Table 5-3M) list usable fuel quantities, weight and moments in both U.S. and metric units.

Fuel density versus temperature (Table 5-4), is provided to calculate fuel weight variation for equivalent volumes of fuel caused by a change in temperature. For example weight of 127.8 gallons (full fuel) of JP-5 at -40°F is 913.8 pounds (414.5 kg) versus 869.0 pounds (394.1 kg) shown on Fuel loading chart (Table 5-3 and Table 5-3M).

5.8 Sample Loading Problem

A sample loading problem showing derivation of critical gross weights and center of gravity locations for a typical mission is presented in U.S. and metric units (Table 5-5 and Table 5-5M). Method shown derives a gross weight with zero fuel for each load condition to be checked, then adds appropriate fuel weight and moment read directly from fuel loading table. Center of gravity for each condition is calculated by dividing total moment by total weight.

Forms have been provided (Table 5-6 and Table 5-6M) in both U.S. and metric units, to aid in computing critical load conditions for a flight.
Figure 5-1 – Fuselage Stations

Note

Reference datum line, (Fuselage Station O), is located 55.16 inches (1401 millimeters) forward of the forward jack point center line.
Figure 5-2 – Buttock Lines Inches (Millimeters)
Figure 5-3 – Fuel Center of Gravity
Table 5-1 – Door Weights and Moments (US)

<table>
<thead>
<tr>
<th>Door</th>
<th>Weight (LB)</th>
<th>CG (IN)</th>
<th>Moment (IN•LB)</th>
<th>CG (IN)</th>
<th>Moment (IN•LB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One crew door</td>
<td>13</td>
<td>64</td>
<td>832</td>
<td>±26</td>
<td>±338</td>
</tr>
<tr>
<td>Both crew doors</td>
<td>26</td>
<td>64</td>
<td>1664</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>One passenger door</td>
<td>15</td>
<td>125</td>
<td>1875</td>
<td>±27</td>
<td>±405</td>
</tr>
<tr>
<td>Both passenger doors</td>
<td>30</td>
<td>125</td>
<td>3750</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Left passenger door and litter door</td>
<td>29</td>
<td>111</td>
<td>3219</td>
<td>-27</td>
<td>-783</td>
</tr>
</tbody>
</table>

Table 5-1M – Door Weights and Moments (Metric)

<table>
<thead>
<tr>
<th>Door</th>
<th>Weight (KG)</th>
<th>CG (MM)</th>
<th>Moment (KG•MM /100)</th>
<th>CG (MM)</th>
<th>Moment (KG•MM /100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One crew door</td>
<td>5.9</td>
<td>1626</td>
<td>95.9 ±660</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td>Both crew doors</td>
<td>11.8</td>
<td>1626</td>
<td>191.9 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>One passenger door</td>
<td>6.8</td>
<td>3175</td>
<td>215.9 ±686</td>
<td>46.6</td>
<td></td>
</tr>
<tr>
<td>Both passenger doors</td>
<td>13.6</td>
<td>3175</td>
<td>431.8 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Left passenger door and litter door</td>
<td>13.2</td>
<td>2819</td>
<td>372.1 -686</td>
<td>-90.6</td>
<td></td>
</tr>
</tbody>
</table>
Table 5-2 – Cabin and Baggage Loading (U.S.)

<table>
<thead>
<tr>
<th>WEIGHT (LB)</th>
<th>FRONT SEAT (AFT FACING) FS 65</th>
<th>MID-PASS. (AFT FACING) FS 91</th>
<th>AFT-PASS. (FACING) FS 129</th>
<th>LITTER PATIENT(S) FS 108</th>
<th>BAGGAGE FS 174</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>650</td>
<td>910</td>
<td>1290</td>
<td>1080</td>
<td>1740</td>
</tr>
<tr>
<td>20</td>
<td>1300</td>
<td>1820</td>
<td>2580</td>
<td>2160</td>
<td>3480</td>
</tr>
<tr>
<td>30</td>
<td>1950</td>
<td>2730</td>
<td>3870</td>
<td>3240</td>
<td>5220</td>
</tr>
<tr>
<td>40</td>
<td>2600</td>
<td>3640</td>
<td>5160</td>
<td>4320</td>
<td>6960</td>
</tr>
<tr>
<td>50</td>
<td>3250</td>
<td>4550</td>
<td>6450</td>
<td>5400</td>
<td>8700</td>
</tr>
<tr>
<td>60</td>
<td>3900</td>
<td>5460</td>
<td>7740</td>
<td>6480</td>
<td>10440</td>
</tr>
<tr>
<td>70</td>
<td>4550</td>
<td>6370</td>
<td>9030</td>
<td>7560</td>
<td>12180</td>
</tr>
<tr>
<td>80</td>
<td>5200</td>
<td>7280</td>
<td>10320</td>
<td>8640</td>
<td>13920</td>
</tr>
<tr>
<td>90</td>
<td>5850</td>
<td>8190</td>
<td>11610</td>
<td>9720</td>
<td>15660</td>
</tr>
<tr>
<td>100</td>
<td>6500</td>
<td>9100</td>
<td>12900</td>
<td>10800</td>
<td>17400</td>
</tr>
<tr>
<td>110</td>
<td>7150</td>
<td>10010</td>
<td>14190</td>
<td>11880</td>
<td>19140</td>
</tr>
<tr>
<td>120</td>
<td>7800</td>
<td>10920</td>
<td>15480</td>
<td>12960</td>
<td>20880</td>
</tr>
<tr>
<td>130</td>
<td>8450</td>
<td>11830</td>
<td>16770</td>
<td>14040</td>
<td>22620</td>
</tr>
<tr>
<td>140</td>
<td>9100</td>
<td>12740</td>
<td>18060</td>
<td>15120</td>
<td>24360</td>
</tr>
<tr>
<td>150</td>
<td>9750</td>
<td>13650</td>
<td>19350</td>
<td>16200</td>
<td>26100</td>
</tr>
<tr>
<td>160</td>
<td>10400</td>
<td>14560</td>
<td>20640</td>
<td>17280</td>
<td>27840</td>
</tr>
<tr>
<td>170</td>
<td>11050</td>
<td>15470</td>
<td>21930</td>
<td>18360</td>
<td>29580</td>
</tr>
<tr>
<td>180</td>
<td>11700</td>
<td>16380</td>
<td>23220</td>
<td>19440</td>
<td>31320</td>
</tr>
<tr>
<td>190</td>
<td>12350</td>
<td>17290</td>
<td>24510</td>
<td>20520</td>
<td>33060</td>
</tr>
<tr>
<td>200</td>
<td>13000</td>
<td>18200</td>
<td>25800</td>
<td>21600</td>
<td>34800</td>
</tr>
<tr>
<td>210</td>
<td>13650</td>
<td>19110</td>
<td>27090</td>
<td>22680</td>
<td>36540</td>
</tr>
<tr>
<td>220</td>
<td>14300</td>
<td>20020</td>
<td>28380</td>
<td>23760</td>
<td>38280</td>
</tr>
<tr>
<td>230</td>
<td>14950</td>
<td>20930</td>
<td>29670</td>
<td>24840</td>
<td>40020</td>
</tr>
<tr>
<td>240</td>
<td>15600</td>
<td>21840</td>
<td>30960</td>
<td>25920</td>
<td>41760</td>
</tr>
<tr>
<td>250</td>
<td>16250</td>
<td>22750</td>
<td>32250</td>
<td>27000</td>
<td>43500</td>
</tr>
<tr>
<td>260</td>
<td>16900</td>
<td>23660</td>
<td>33540</td>
<td>28080</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>17550</td>
<td>24570</td>
<td>34830</td>
<td>29160</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>18200</td>
<td>25480</td>
<td>36120</td>
<td>30240</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>18850</td>
<td>26390</td>
<td>37410</td>
<td>31320</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>19500</td>
<td>27300</td>
<td>38700</td>
<td>32400</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>20150</td>
<td>28210</td>
<td>39990</td>
<td>33480</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>20800</td>
<td>29120</td>
<td>41280</td>
<td>34560</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>21450</td>
<td>30030</td>
<td>42570</td>
<td>35640</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>22100</td>
<td>30940</td>
<td>43860</td>
<td>36720</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>22750</td>
<td>31850</td>
<td>45150</td>
<td>37800</td>
<td></td>
</tr>
</tbody>
</table>

COPYRIGHT © 2014 BY EAGLE COPTERS LTD
This document is private and confidential and is supplied on the express condition that it is not to be used for any purpose or copied or communicated to any other person without written permission from Eagle Copters Ltd.
Table 5-2M – Cabin and Baggage Loading (Metric)

<table>
<thead>
<tr>
<th>Weight (KG)</th>
<th>Front Seat (1651.0 MM)</th>
<th>Mid-Pass. (Aft Facing 2311.4 MM)</th>
<th>Aft-Pass. (Fwd Facing 3276.6 MM)</th>
<th>Litter Patient(S) (2743.2 MM)</th>
<th>Baggage (4419.6 MM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>82.6</td>
<td>115.6</td>
<td>163.8</td>
<td>137.2</td>
<td>221.0</td>
</tr>
<tr>
<td>10</td>
<td>165.1</td>
<td>231.1</td>
<td>327.7</td>
<td>274.3</td>
<td>442.0</td>
</tr>
<tr>
<td>15</td>
<td>247.7</td>
<td>346.7</td>
<td>491.5</td>
<td>411.5</td>
<td>622.9</td>
</tr>
<tr>
<td>20</td>
<td>330.2</td>
<td>462.3</td>
<td>655.3</td>
<td>548.6</td>
<td>883.9</td>
</tr>
<tr>
<td>25</td>
<td>412.8</td>
<td>577.9</td>
<td>819.2</td>
<td>685.8</td>
<td>1104.9</td>
</tr>
<tr>
<td>30</td>
<td>495.3</td>
<td>693.4</td>
<td>983.0</td>
<td>823.0</td>
<td>1325.9</td>
</tr>
<tr>
<td>35</td>
<td>577.9</td>
<td>809.0</td>
<td>1146.8</td>
<td>960.1</td>
<td>1546.9</td>
</tr>
<tr>
<td>40</td>
<td>660.4</td>
<td>924.6</td>
<td>1310.6</td>
<td>1097.3</td>
<td>1767.8</td>
</tr>
<tr>
<td>45</td>
<td>743.0</td>
<td>1040.1</td>
<td>1474.5</td>
<td>1234.4</td>
<td>1988.8</td>
</tr>
<tr>
<td>50</td>
<td>825.5</td>
<td>1155.7</td>
<td>1638.3</td>
<td>1371.6</td>
<td>2209.8</td>
</tr>
<tr>
<td>55</td>
<td>908.1</td>
<td>1271.3</td>
<td>1802.1</td>
<td>1508.8</td>
<td>2430.8</td>
</tr>
<tr>
<td>60</td>
<td>990.6</td>
<td>1386.8</td>
<td>1966.0</td>
<td>1645.9</td>
<td>2651.8</td>
</tr>
<tr>
<td>65</td>
<td>1073.2</td>
<td>1502.4</td>
<td>2129.8</td>
<td>1783.1</td>
<td>2872.7</td>
</tr>
<tr>
<td>70</td>
<td>1155.7</td>
<td>1618.0</td>
<td>2293.6</td>
<td>1920.2</td>
<td>3093.7</td>
</tr>
<tr>
<td>75</td>
<td>1238.3</td>
<td>1733.6</td>
<td>2457.5</td>
<td>2057.4</td>
<td>3314.7</td>
</tr>
<tr>
<td>80</td>
<td>1320.8</td>
<td>1849.1</td>
<td>2621.3</td>
<td>2194.6</td>
<td>3535.7</td>
</tr>
<tr>
<td>85</td>
<td>1403.4</td>
<td>1964.7</td>
<td>2785.1</td>
<td>2331.7</td>
<td>3756.7</td>
</tr>
<tr>
<td>90</td>
<td>1485.9</td>
<td>2080.3</td>
<td>2948.9</td>
<td>2468.9</td>
<td>3977.6</td>
</tr>
<tr>
<td>95</td>
<td>1568.5</td>
<td>2195.8</td>
<td>3112.8</td>
<td>2606.0</td>
<td>4198.6</td>
</tr>
<tr>
<td>100</td>
<td>1651.0</td>
<td>2311.4</td>
<td>3276.6</td>
<td>2743.2</td>
<td>4419.6</td>
</tr>
<tr>
<td>105</td>
<td>1733.6</td>
<td>2427.0</td>
<td>3440.4</td>
<td>2880.4</td>
<td>4640.6</td>
</tr>
<tr>
<td>110</td>
<td>1816.1</td>
<td>2542.5</td>
<td>3604.3</td>
<td>3017.5</td>
<td>4861.6</td>
</tr>
<tr>
<td>113.4</td>
<td>1872.2</td>
<td>2621.1</td>
<td>3715.7</td>
<td>3110.8</td>
<td>5011.8</td>
</tr>
<tr>
<td>115</td>
<td>1898.7</td>
<td>2658.1</td>
<td>3768.1</td>
<td>3154.7</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1981.2</td>
<td>2773.7</td>
<td>3831.9</td>
<td>3291.8</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>2063.8</td>
<td>2889.3</td>
<td>4095.8</td>
<td>3429.0</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>2146.3</td>
<td>3004.8</td>
<td>4259.6</td>
<td>3566.2</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>2228.9</td>
<td>3120.4</td>
<td>4423.4</td>
<td>3703.3</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>2311.4</td>
<td>3236.0</td>
<td>4587.2</td>
<td>3840.5</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>2394.0</td>
<td>3351.5</td>
<td>4751.1</td>
<td>3977.6</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>2476.5</td>
<td>3467.1</td>
<td>4914.9</td>
<td>4114.8</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5</td>
<td>32.5</td>
<td>133.7</td>
<td>4345</td>
<td>5</td>
<td>34.0</td>
</tr>
<tr>
<td>10</td>
<td>65.0</td>
<td>135.0</td>
<td>8775</td>
<td>10</td>
<td>68.0</td>
</tr>
<tr>
<td>15</td>
<td>97.5</td>
<td>135.9</td>
<td>13250</td>
<td>15</td>
<td>102.0</td>
</tr>
<tr>
<td>20</td>
<td>130</td>
<td>136.4</td>
<td>17732</td>
<td>20</td>
<td>136.0</td>
</tr>
<tr>
<td>25</td>
<td>162.5</td>
<td>136.7</td>
<td>22214</td>
<td>25</td>
<td>170.0</td>
</tr>
<tr>
<td>28.4*</td>
<td>184.6</td>
<td>137.0</td>
<td>25290</td>
<td>28.4*</td>
<td>193.1</td>
</tr>
<tr>
<td>30</td>
<td>195.0</td>
<td>134.3</td>
<td>26189</td>
<td>30</td>
<td>204.0</td>
</tr>
<tr>
<td>35</td>
<td>227.5</td>
<td>127.8</td>
<td>29075</td>
<td>35</td>
<td>238.0</td>
</tr>
<tr>
<td>40</td>
<td>260.0</td>
<td>122.9</td>
<td>31954</td>
<td>40</td>
<td>272.0</td>
</tr>
<tr>
<td>45</td>
<td>292.5</td>
<td>119.1</td>
<td>34837</td>
<td>45</td>
<td>306.0</td>
</tr>
<tr>
<td>50</td>
<td>325.0</td>
<td>116.0</td>
<td>37700</td>
<td>50</td>
<td>340.0</td>
</tr>
<tr>
<td>50.6**</td>
<td>328.9</td>
<td>115.7</td>
<td>38054</td>
<td>50.6**</td>
<td>344.1</td>
</tr>
<tr>
<td>55</td>
<td>357.5</td>
<td>116.1</td>
<td>41506</td>
<td>55</td>
<td>366.0</td>
</tr>
<tr>
<td>60</td>
<td>390.0</td>
<td>116.2</td>
<td>45318</td>
<td>60</td>
<td>408.0</td>
</tr>
<tr>
<td>65</td>
<td>422.5</td>
<td>116.2</td>
<td>40095</td>
<td>65</td>
<td>442.0</td>
</tr>
<tr>
<td>70</td>
<td>455.0</td>
<td>116.1</td>
<td>52826</td>
<td>70</td>
<td>476.0</td>
</tr>
<tr>
<td>74.8***</td>
<td>486.2</td>
<td>116.0</td>
<td>56399</td>
<td>74.8***</td>
<td>508.6</td>
</tr>
<tr>
<td>75</td>
<td>487.5</td>
<td>116.1</td>
<td>56599</td>
<td>75</td>
<td>510.0</td>
</tr>
<tr>
<td>80</td>
<td>520.0</td>
<td>117.7</td>
<td>61204</td>
<td>80</td>
<td>544.0</td>
</tr>
<tr>
<td>85</td>
<td>552.5</td>
<td>119.0</td>
<td>65748</td>
<td>85</td>
<td>578.0</td>
</tr>
<tr>
<td>90</td>
<td>585.0</td>
<td>120.3</td>
<td>70376</td>
<td>90</td>
<td>612.0</td>
</tr>
<tr>
<td>95</td>
<td>617.5</td>
<td>121.4</td>
<td>74965</td>
<td>95</td>
<td>646.0</td>
</tr>
<tr>
<td>100</td>
<td>650.0</td>
<td>122.3</td>
<td>79495</td>
<td>100</td>
<td>680.0</td>
</tr>
<tr>
<td>105</td>
<td>682.5</td>
<td>123.4</td>
<td>84221</td>
<td>105</td>
<td>714.0</td>
</tr>
<tr>
<td>110</td>
<td>715.0</td>
<td>124.6</td>
<td>89089</td>
<td>110</td>
<td>748.0</td>
</tr>
<tr>
<td>115</td>
<td>747.5</td>
<td>125.6</td>
<td>93886</td>
<td>115</td>
<td>782.0</td>
</tr>
<tr>
<td>120</td>
<td>780.0</td>
<td>126.6</td>
<td>98748</td>
<td>120</td>
<td>816.0</td>
</tr>
<tr>
<td>125</td>
<td>812.5</td>
<td>127.5</td>
<td>103594</td>
<td>125</td>
<td>850.0</td>
</tr>
<tr>
<td>127.8****</td>
<td>830.7</td>
<td>127.9</td>
<td>106247</td>
<td>127.8****</td>
<td>889.0</td>
</tr>
</tbody>
</table>

* Critical fuel for most aft CG condition.
** Most forward fuel CG.
*** Critical fuel for most forward CG condition.
**** Full fuel.

Note: All data above represents usable fuel based on nominal density at 15°C (59°F)
Table 5-3M – Fuel Loading (Metric)

<table>
<thead>
<tr>
<th>Quantity (L)</th>
<th>JP-4 Weight (KG)</th>
<th>CG (MM)</th>
<th>Moment (KG•MM/100)</th>
<th>Quantity (L)</th>
<th>Weight (KG)</th>
<th>CG (MM)</th>
<th>Moment (KG•MM/100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>11.7</td>
<td>3389</td>
<td>397</td>
<td>15</td>
<td>12.2</td>
<td>3389</td>
<td>413</td>
</tr>
<tr>
<td>30</td>
<td>23.4</td>
<td>3415</td>
<td>799</td>
<td>30</td>
<td>24.4</td>
<td>3415</td>
<td>833</td>
</tr>
<tr>
<td>45</td>
<td>35.1</td>
<td>3439</td>
<td>1204</td>
<td>45</td>
<td>36.7</td>
<td>3439</td>
<td>1262</td>
</tr>
<tr>
<td>60</td>
<td>46.7</td>
<td>3455</td>
<td>1613</td>
<td>60</td>
<td>48.9</td>
<td>3455</td>
<td>1689</td>
</tr>
<tr>
<td>75</td>
<td>58.4</td>
<td>3465</td>
<td>2024</td>
<td>75</td>
<td>61.1</td>
<td>3465</td>
<td>2117</td>
</tr>
<tr>
<td>90</td>
<td>70.1</td>
<td>3472</td>
<td>2435</td>
<td>90</td>
<td>73.3</td>
<td>3472</td>
<td>2545</td>
</tr>
<tr>
<td>105</td>
<td>81.8</td>
<td>3478</td>
<td>2845</td>
<td>105</td>
<td>85.6</td>
<td>3478</td>
<td>2977</td>
</tr>
<tr>
<td>107.5*</td>
<td>83.7</td>
<td>3479</td>
<td>2912</td>
<td>107.5*</td>
<td>87.6</td>
<td>3479</td>
<td>3048</td>
</tr>
<tr>
<td>120</td>
<td>93.5</td>
<td>3522</td>
<td>3134</td>
<td>120</td>
<td>97.8</td>
<td>3522</td>
<td>3278</td>
</tr>
<tr>
<td>135</td>
<td>105.2</td>
<td>3229</td>
<td>3396</td>
<td>135</td>
<td>110.0</td>
<td>3229</td>
<td>3551</td>
</tr>
<tr>
<td>150</td>
<td>116.9</td>
<td>3129</td>
<td>3658</td>
<td>150</td>
<td>122.2</td>
<td>3129</td>
<td>3824</td>
</tr>
<tr>
<td>165</td>
<td>128.5</td>
<td>3049</td>
<td>3918</td>
<td>165</td>
<td>134.4</td>
<td>3049</td>
<td>4098</td>
</tr>
<tr>
<td>180</td>
<td>140.2</td>
<td>2982</td>
<td>4181</td>
<td>180</td>
<td>146.7</td>
<td>2982</td>
<td>4375</td>
</tr>
<tr>
<td>191.6**</td>
<td>149.3</td>
<td>2938</td>
<td>4386</td>
<td>191.6**</td>
<td>156.1</td>
<td>2938</td>
<td>4586</td>
</tr>
<tr>
<td>195</td>
<td>151.9</td>
<td>2940</td>
<td>4466</td>
<td>195</td>
<td>158.9</td>
<td>2940</td>
<td>4672</td>
</tr>
<tr>
<td>210</td>
<td>163.6</td>
<td>2949</td>
<td>4825</td>
<td>210</td>
<td>171.1</td>
<td>2949</td>
<td>5046</td>
</tr>
<tr>
<td>225</td>
<td>175.3</td>
<td>2951</td>
<td>5173</td>
<td>225</td>
<td>183.3</td>
<td>2951</td>
<td>5409</td>
</tr>
<tr>
<td>240</td>
<td>187.0</td>
<td>2953</td>
<td>5522</td>
<td>240</td>
<td>195.6</td>
<td>2953</td>
<td>5776</td>
</tr>
<tr>
<td>255</td>
<td>196.6</td>
<td>2950</td>
<td>5859</td>
<td>255</td>
<td>207.8</td>
<td>2950</td>
<td>6130</td>
</tr>
<tr>
<td>270</td>
<td>210.3</td>
<td>2948</td>
<td>6200</td>
<td>270</td>
<td>220.0</td>
<td>2948</td>
<td>6486</td>
</tr>
<tr>
<td>283.0***</td>
<td>220.5</td>
<td>2948</td>
<td>6500</td>
<td>283.0***</td>
<td>230.6</td>
<td>2948</td>
<td>6798</td>
</tr>
<tr>
<td>285</td>
<td>222.0</td>
<td>2951</td>
<td>6551</td>
<td>285</td>
<td>232.2</td>
<td>2951</td>
<td>6852</td>
</tr>
<tr>
<td>300</td>
<td>237.3</td>
<td>2983</td>
<td>6971</td>
<td>300</td>
<td>244.5</td>
<td>2983</td>
<td>7293</td>
</tr>
<tr>
<td>315</td>
<td>245.4</td>
<td>3012</td>
<td>7391</td>
<td>315</td>
<td>256.7</td>
<td>3012</td>
<td>7732</td>
</tr>
<tr>
<td>330</td>
<td>257.1</td>
<td>3038</td>
<td>7811</td>
<td>330</td>
<td>268.9</td>
<td>3038</td>
<td>8169</td>
</tr>
<tr>
<td>345</td>
<td>268.8</td>
<td>3061</td>
<td>8228</td>
<td>345</td>
<td>281.1</td>
<td>3061</td>
<td>8604</td>
</tr>
<tr>
<td>360</td>
<td>280.4</td>
<td>3083</td>
<td>8645</td>
<td>360</td>
<td>293.3</td>
<td>3083</td>
<td>9042</td>
</tr>
<tr>
<td>375</td>
<td>292.1</td>
<td>3103</td>
<td>9064</td>
<td>375</td>
<td>305.6</td>
<td>3103</td>
<td>9483</td>
</tr>
<tr>
<td>390</td>
<td>303.8</td>
<td>3123</td>
<td>9488</td>
<td>390</td>
<td>317.8</td>
<td>3123</td>
<td>9925</td>
</tr>
<tr>
<td>405</td>
<td>315.5</td>
<td>3147</td>
<td>9929</td>
<td>405</td>
<td>330.0</td>
<td>3147</td>
<td>10385</td>
</tr>
<tr>
<td>420</td>
<td>327.2</td>
<td>3169</td>
<td>10369</td>
<td>420</td>
<td>342.2</td>
<td>3169</td>
<td>10844</td>
</tr>
<tr>
<td>435</td>
<td>338.9</td>
<td>3190</td>
<td>10811</td>
<td>435</td>
<td>354.5</td>
<td>3190</td>
<td>11309</td>
</tr>
<tr>
<td>450</td>
<td>350.6</td>
<td>3210</td>
<td>11254</td>
<td>450</td>
<td>366.7</td>
<td>3210</td>
<td>11771</td>
</tr>
<tr>
<td>465</td>
<td>362.2</td>
<td>3228</td>
<td>11692</td>
<td>465</td>
<td>378.9</td>
<td>3228</td>
<td>12231</td>
</tr>
<tr>
<td>480</td>
<td>373.9</td>
<td>3245</td>
<td>12133</td>
<td>480</td>
<td>391.1</td>
<td>3245</td>
<td>12691</td>
</tr>
<tr>
<td>483.7****</td>
<td>376.8</td>
<td>3249</td>
<td>12242</td>
<td>483.7****</td>
<td>394.1</td>
<td>3249</td>
<td>12804</td>
</tr>
</tbody>
</table>

* Critical fuel for most aft CG condition.
** Most forward fuel CG.
*** Critical fuel for most forward CG condition.
**** Full fuel.

Note: All data above represents usable fuel based on nominal density at 15°C (59°F)
<table>
<thead>
<tr>
<th>TEMPERATURE (*F)</th>
<th>DENSITY</th>
<th>DENSITY</th>
<th>TEMPERATURE (*C)</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LB/GAL</td>
<td>LB/GAL</td>
<td></td>
<td>KG/L</td>
</tr>
<tr>
<td></td>
<td>JP-4</td>
<td>JP-5</td>
<td></td>
<td>JP-4</td>
</tr>
<tr>
<td></td>
<td>KG/L</td>
<td>KG/L</td>
<td></td>
<td>JP-5</td>
</tr>
<tr>
<td>120</td>
<td>6.27</td>
<td>6.59</td>
<td>40</td>
<td>0.759</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.797</td>
</tr>
<tr>
<td>100</td>
<td>6.35</td>
<td>6.66</td>
<td>30</td>
<td>0.767</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.805</td>
</tr>
<tr>
<td>80</td>
<td>6.42</td>
<td>6.73</td>
<td>20</td>
<td>0.775</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.812</td>
</tr>
<tr>
<td>60*</td>
<td>6.50</td>
<td>6.80</td>
<td>15.56*</td>
<td>0.779</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.815</td>
</tr>
<tr>
<td>40</td>
<td>6.58</td>
<td>6.87</td>
<td>10</td>
<td>0.784</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.820</td>
</tr>
<tr>
<td>20</td>
<td>6.65</td>
<td>6.94</td>
<td>0</td>
<td>0.792</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.827</td>
</tr>
<tr>
<td>0</td>
<td>6.73</td>
<td>7.01</td>
<td>-10</td>
<td>0.800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.835</td>
</tr>
<tr>
<td>-20</td>
<td>6.80</td>
<td>7.08</td>
<td>-20</td>
<td>0.808</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.842</td>
</tr>
<tr>
<td>-40</td>
<td>6.88</td>
<td>7.15</td>
<td>-30</td>
<td>0.816</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.850</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40</td>
<td>0.824</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.857</td>
</tr>
</tbody>
</table>

* Standard density, used to derive fuel burn curves.
Table 5-5 – Sample Loading Problem (US)

A helicopter is chartered to transport 4 passengers plus pilot and 200 pounds of baggage on a trip that will require approximately 113 gallons of JP-5 fuel (one way). The pilot will return alone. Compute weight and center of gravity at takeoff and landing, and determine extreme CG conditions for both flights.

OUTBOUND FLIGHT

<table>
<thead>
<tr>
<th></th>
<th>LONGITUDINAL</th>
<th>LATERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weight (LB)</td>
<td>CG (IN)</td>
</tr>
<tr>
<td>Empty Weight</td>
<td>2824.1</td>
<td>131.0</td>
</tr>
<tr>
<td>+Oil</td>
<td>13.0</td>
<td>205.0</td>
</tr>
<tr>
<td>+Pilot</td>
<td>200.0</td>
<td>65.0</td>
</tr>
<tr>
<td>+Forward Passenger</td>
<td>200.0</td>
<td>65.0</td>
</tr>
<tr>
<td>+Mid Passenger</td>
<td>180.0</td>
<td>91.0</td>
</tr>
<tr>
<td>+Aft Passenger</td>
<td>320.0</td>
<td>129.0</td>
</tr>
<tr>
<td>+Baggage</td>
<td>200.0</td>
<td>174.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>3937.1</td>
<td>124.7</td>
</tr>
<tr>
<td>+Full Fuel (JP-5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>869.0</td>
<td>127.9</td>
</tr>
<tr>
<td>Takeoff Gross Weight</td>
<td>4806.1✓</td>
<td>125.3✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>3937.1</td>
<td>124.7</td>
</tr>
<tr>
<td>+Critical Fuel for Most Fwd</td>
<td>508.6</td>
<td>116.0</td>
</tr>
<tr>
<td>Most Forward CG Condition</td>
<td>4445.7✓</td>
<td>123.7✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>3937.1</td>
<td>124.7</td>
</tr>
<tr>
<td>+Critical Fuel for Most Aft</td>
<td>193.1</td>
<td>137.0</td>
</tr>
<tr>
<td>Most Aft CG Condition</td>
<td>4130.2✓</td>
<td>125.3✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>3937.1</td>
<td>124.7</td>
</tr>
<tr>
<td>+Fuel at Landing (14.8 Gal)</td>
<td>100.6</td>
<td>135.9</td>
</tr>
<tr>
<td>Landing Condition</td>
<td>4037.7✓</td>
<td>125.0✓</td>
</tr>
</tbody>
</table>
RETURN FLIGHT

<table>
<thead>
<tr>
<th></th>
<th>Weight (LB)</th>
<th>LONGITUDINAL</th>
<th>LATERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CG (IN)</td>
<td>Moment (IN-LB)</td>
</tr>
<tr>
<td>Empty Weight</td>
<td>2824.1</td>
<td>131.0</td>
<td>369957</td>
</tr>
<tr>
<td>+Oil</td>
<td>13.0</td>
<td>205.0</td>
<td>2665</td>
</tr>
<tr>
<td>+Pilot</td>
<td>200.0</td>
<td>65.0</td>
<td>13000</td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>3037.1</td>
<td>127.0</td>
<td>385622</td>
</tr>
<tr>
<td>+Full Fuel (JP-5)</td>
<td>869.0</td>
<td>127.9</td>
<td>111145</td>
</tr>
<tr>
<td>Takeoff Gross Weight</td>
<td>3906.1</td>
<td>127.2</td>
<td>496767</td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>3037.1</td>
<td>127.0</td>
<td>385622</td>
</tr>
<tr>
<td>+Critical Fuel for Most Fwd</td>
<td>508.6</td>
<td>116.0</td>
<td>58998</td>
</tr>
<tr>
<td>Most Forward CG Condition</td>
<td>3545.7</td>
<td>125.4</td>
<td>444620</td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>3037.1</td>
<td>127.0</td>
<td>385622</td>
</tr>
<tr>
<td>+Critical Fuel for Most Aft</td>
<td>193.1</td>
<td>137.0</td>
<td>26455</td>
</tr>
<tr>
<td>Most Aft CG Condition</td>
<td>3230.2</td>
<td>127.6</td>
<td>412077</td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>3037.1</td>
<td>127.0</td>
<td>385622</td>
</tr>
<tr>
<td>+Fuel at Landing (14.8 Gal)</td>
<td>100.6</td>
<td>135.9</td>
<td>13672</td>
</tr>
<tr>
<td>Landing Condition</td>
<td>3137.7</td>
<td>127.3</td>
<td>399294</td>
</tr>
</tbody>
</table>

* Example only. Refer to Actual Weight Record for actual empty weight data.

✓ A check of weight and CG values against gross weight center of gravity limits chart shows that the loading will be within limits throughout flight. In lateral calculations, - is left side and + is right side.
Table 5-5M – Sample Loading Problem (Metric)

A helicopter is chartered to transport 4 passengers plus pilot and 90.7 kilograms of baggage on a trip that will require approximately 427 liters of JP-5 fuel (one way). The pilot will return alone. Compute weight and center of gravity at takeoff and landing, and determine extreme CG conditions for both flights.

<table>
<thead>
<tr>
<th>Weight (KG)</th>
<th>CG (MM)</th>
<th>Moment (KG•MM /100)</th>
<th>CG (MM)</th>
<th>Moment (KG•M M/100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTBOUND FLIGHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty Weight</td>
<td>*1281.0</td>
<td>3327</td>
<td>42618.9</td>
<td>3</td>
</tr>
<tr>
<td>+Oil</td>
<td>5.9</td>
<td>5207</td>
<td>307.2</td>
<td>0</td>
</tr>
<tr>
<td>+Pilot</td>
<td>90.7</td>
<td>1651</td>
<td>1497.5</td>
<td>356</td>
</tr>
<tr>
<td>+Forward Passenger</td>
<td>90.7</td>
<td>1651</td>
<td>1497.5</td>
<td>-283</td>
</tr>
<tr>
<td>+Mid Passenger (1)</td>
<td>81.6</td>
<td>2311</td>
<td>1885.8</td>
<td>394</td>
</tr>
<tr>
<td>+Aft Passenger (2)</td>
<td>145.2</td>
<td>3277</td>
<td>4758.2</td>
<td>0</td>
</tr>
<tr>
<td>+Baggage</td>
<td>90.7</td>
<td>4420</td>
<td>4008.9</td>
<td>0</td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>1785.8</td>
<td>3168</td>
<td>56573.9</td>
<td>24</td>
</tr>
<tr>
<td>+Full Fuel (JP-5)</td>
<td>394.1</td>
<td>3249</td>
<td>12804.3</td>
<td>0</td>
</tr>
<tr>
<td>Takeoff Gross Weight</td>
<td>2179.9</td>
<td>3183</td>
<td>69378.2</td>
<td>19</td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>1785.8</td>
<td>3168</td>
<td>56573.9</td>
<td>24</td>
</tr>
<tr>
<td>+Critical Fuel for Most Fwd</td>
<td>230.6</td>
<td>2948</td>
<td>6798.1</td>
<td>0</td>
</tr>
<tr>
<td>Most Forward CG Condition</td>
<td>2016.4</td>
<td>3143</td>
<td>63372.0</td>
<td>21</td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>1785.8</td>
<td>3168</td>
<td>56573.9</td>
<td>24</td>
</tr>
<tr>
<td>+Critical Fuel for Most Aft</td>
<td>87.6</td>
<td>3479</td>
<td>3047.6</td>
<td>0</td>
</tr>
<tr>
<td>Most Aft CG Condition</td>
<td>1873.4</td>
<td>3183</td>
<td>59621.5</td>
<td>23</td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>1785.8</td>
<td>3168</td>
<td>56573.9</td>
<td>24</td>
</tr>
<tr>
<td>+Fuel at Landing (56.7 L)</td>
<td>46.2</td>
<td>3469</td>
<td>1602.7</td>
<td>0</td>
</tr>
<tr>
<td>Landing Condition</td>
<td>1832.0</td>
<td>3176</td>
<td>58176.6</td>
<td>23</td>
</tr>
</tbody>
</table>
RETURN FLIGHT

<table>
<thead>
<tr>
<th>Weight (KG)</th>
<th>LONGITUDINAL</th>
<th>LATERTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CG (MM)</td>
<td>Moment (KG•MM/100)</td>
</tr>
<tr>
<td>Empty Weight</td>
<td>1281.0</td>
<td>3327</td>
</tr>
<tr>
<td>+Oil</td>
<td>5.9</td>
<td>5207</td>
</tr>
<tr>
<td>+Pilot</td>
<td>90.7</td>
<td>1651</td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>1377.6</td>
<td>3225</td>
</tr>
<tr>
<td>+Full Fuel (JP-5)</td>
<td>934.1</td>
<td>3249</td>
</tr>
<tr>
<td>Takeoff Gross Weight</td>
<td>2311.7</td>
<td>3230</td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>1377.6</td>
<td>3225</td>
</tr>
<tr>
<td>+Critical Fuel for Most Fwd</td>
<td>230.6</td>
<td>2948</td>
</tr>
<tr>
<td>Most Forward CG Condition</td>
<td>1608.2</td>
<td>3185</td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>1377.6</td>
<td>3225</td>
</tr>
<tr>
<td>+Critical Fuel for Most Aft</td>
<td>87.6</td>
<td>3479</td>
</tr>
<tr>
<td>Most Aft CG Condition</td>
<td>1465.2</td>
<td>3240</td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>1377.6</td>
<td>3225</td>
</tr>
<tr>
<td>+Fuel at Landing (56.7 L)</td>
<td>46.2</td>
<td>3469</td>
</tr>
<tr>
<td>Landing Condition</td>
<td>1423.8</td>
<td>3233</td>
</tr>
</tbody>
</table>

* Example only. Refer to Actual Weight Record for actual empty weight data.

✓ A check of weight and CG values against gross weight center of gravity limits chart shows that the loading will be within limits throughout flight. In lateral calculations, - is left side and + is right side.
Table 5-6 – Weight and Balance Worksheet (US)

<table>
<thead>
<tr>
<th></th>
<th>WEIGHT (LB)</th>
<th>LONITUDINAL</th>
<th>LATERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CG (IN)</td>
<td>Moment (IN-LB)</td>
</tr>
<tr>
<td>Empty Weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+Oil</td>
<td>13.0</td>
<td>205.0</td>
<td>2665</td>
</tr>
<tr>
<td>+Pilot</td>
<td>65.0</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>+Forward Passenger</td>
<td>65.0</td>
<td>-11.1</td>
<td></td>
</tr>
<tr>
<td>+Mid Passenger (L)</td>
<td>91.0</td>
<td>-13.0</td>
<td></td>
</tr>
<tr>
<td>+Mid Passenger (R)</td>
<td>91.0</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>+Aft Passenger (L)</td>
<td>129.0</td>
<td>-16.8</td>
<td></td>
</tr>
<tr>
<td>+Aft Passenger (M)</td>
<td>129.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>+Aft Passenger (R)</td>
<td>129.0</td>
<td>16.8</td>
<td></td>
</tr>
<tr>
<td>+Baggage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+Litter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+Fuel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takeoff Gross Weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+Critical Fuel for Most Fwd</td>
<td></td>
<td>116.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Most Forward CG Condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+Critical Fuel for Most Aft</td>
<td></td>
<td>137.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Most Aft CG Condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+Fuel Remaining at Landing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landing CG Condition</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5-6M – Weight and Balance Worksheet (Metric)

<table>
<thead>
<tr>
<th></th>
<th>LONGITUDINAL</th>
<th>LATERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weight (KG)</td>
<td>CG (MM)</td>
</tr>
<tr>
<td>Empty Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+Oil</td>
<td>5.9</td>
<td>5207</td>
</tr>
<tr>
<td>+Pilot</td>
<td>1651</td>
<td>356</td>
</tr>
<tr>
<td>+Forward Passenger</td>
<td>1651</td>
<td>-283</td>
</tr>
<tr>
<td>+Mid Passenger (L)</td>
<td>2311</td>
<td>-330</td>
</tr>
<tr>
<td>+Mid Passenger (R)</td>
<td>2311</td>
<td>394</td>
</tr>
<tr>
<td>+Aft Passenger (L)</td>
<td>3277</td>
<td>-425</td>
</tr>
<tr>
<td>+Aft Passenger (M)</td>
<td>3277</td>
<td>0</td>
</tr>
<tr>
<td>+Aft Passenger (R)</td>
<td>3277</td>
<td>425</td>
</tr>
<tr>
<td>+Baggage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+Litter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Fuel</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Takeoff Gross Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>2948</td>
<td>0.0</td>
</tr>
<tr>
<td>Most Forward CG Condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td>3479</td>
<td>0.0</td>
</tr>
<tr>
<td>Most Aft CG Condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight at Zero Fuel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+Fuel Remaining at Landing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landing CG Condition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>